mirror of https://github.com/alibaba/MNN.git
45 lines
1.4 KiB
C++
45 lines
1.4 KiB
C++
//
|
|
// ShapePermute.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
class PermuteComputer : public SizeComputer {
|
|
public:
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(1 == inputs.size());
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
int dimSize = input->dimensions();
|
|
output->buffer().dimensions = dimSize;
|
|
|
|
if (nullptr != op->main_as_Permute()->dims()) {
|
|
auto shape = op->main_as_Permute()->dims();
|
|
MNN_ASSERT(shape->size() == input->buffer().dimensions);
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
output->buffer().dim[i].extent = input->buffer().dim[shape->data()[i]].extent;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
output->buffer().dim[i].extent = input->buffer().dim[dimSize-i-1].extent;
|
|
}
|
|
}
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
output->buffer().type = input->buffer().type;
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE(PermuteComputer, OpType_Permute);
|
|
} // namespace MNN
|