MNN/source/shape/ShapePool.cpp

119 lines
4.8 KiB
C++

//
// ShapePool.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
class PoolSizeComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(2 >= outputs.size());
auto input = inputs[0];
auto output = outputs[0];
bool returnRedice = outputs.size() == 2;
Tensor *indice;
if(returnRedice){
indice = outputs[1];
::memcpy(indice->buffer().dim, input->buffer().dim, input->buffer().dimensions * sizeof(halide_dimension_t));
indice->buffer().dimensions = input->dimensions();
}
::memcpy(output->buffer().dim, input->buffer().dim, input->buffer().dimensions * sizeof(halide_dimension_t));
output->buffer().dimensions = input->dimensions();
auto layer = op->main_as_Pool();
int outw = 1;
int outh = 1;
if (!layer->isGlobal()) {
// when given explicit pad value in tensorflow mode pool, size compute will fast failed to help find problem
if ((layer->padType() == PoolPadType_VALID || layer->padType() == PoolPadType_SAME) && (layer->padX() != 0 || layer->padY() != 0)) {
MNN_PRINT("tensorflow mode pool should not have explict pad value\n");
return false;
}
int w = input->width();
int h = input->height();
if (nullptr != layer->pads()) {
// pads = 2, just add padh_h, padh_l
if (layer->pads()->size() == 2) {
h += (layer->pads()->data()[0] + layer->pads()->data()[1]);
}
// pads = 4, add padh_h, padh_l, padw_l, padw_r
if (layer->pads()->size() == 4) {
w += (layer->pads()->data()[1] + layer->pads()->data()[3]);
h += (layer->pads()->data()[0] + layer->pads()->data()[2]);
}
} else {
w += layer->padX() * 2;
h += layer->padY() * 2;
}
int kernelWidth = std::min(layer->kernelX(), w);
int kernelHeight = std::min(layer->kernelY(), h);
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
outw = ceil((float)w / (float)layer->strideX());
outh = ceil((float)h / (float)layer->strideY());
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
outw = ceil((float)(w - kernelWidth + 1) / (float)layer->strideX());
outh = ceil((float)(h - kernelHeight + 1) / (float)layer->strideY());
} else {
if (layer->ceilModel()) {
outw = UP_DIV(w - kernelWidth, layer->strideX()) + 1;
outh = UP_DIV(h - kernelHeight, layer->strideY()) + 1;
} else {
outw = floor((w - kernelWidth) / layer->strideX() + 1);
outh = floor((h - kernelHeight) / layer->strideY() + 1);
}
}
}
if (outw <= 0 || outh <= 0) {
return false;
}
auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
if (format == MNN_DATA_FORMAT_NHWC) {
output->buffer().dim[2].extent = outw;
output->buffer().dim[1].extent = outh;
if(returnRedice){
indice->buffer().dim[2].extent = outw;
indice->buffer().dim[1].extent = outh;
}
} else {
output->buffer().dim[3].extent = outw;
output->buffer().dim[2].extent = outh;
if(returnRedice){
indice->buffer().dim[3].extent = outw;
indice->buffer().dim[2].extent = outh;
}
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = format;
output->buffer().type = input->buffer().type;
if(returnRedice){
TensorUtils::getDescribe(outputs[1])->dimensionFormat = format;
indice->buffer().type = halide_type_of<int>();
}
return true;
}
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto size = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
auto layer = op->main_as_Pool();
return size * layer->kernelX() * layer->kernelY();
}
};
REGISTER_SHAPE(PoolSizeComputer, OpType_Pooling);
REGISTER_SHAPE(PoolSizeComputer, OpType_PoolInt8);
} // namespace MNN