mirror of https://github.com/alibaba/MNN.git
48 lines
1.6 KiB
C++
48 lines
1.6 KiB
C++
//
|
|
// ShapeROIPooling.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
|
|
// Size Computer
|
|
class ROIPoolingComputer : public SizeComputer {
|
|
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
|
|
const std::vector<Tensor *> &outputs) const override {
|
|
MNN_ASSERT(2 == inputs.size() || 3 == inputs.size());
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
if (inputs.size() == 2) {
|
|
// copy dims
|
|
auto &input = inputs[0]->buffer();
|
|
auto &output = outputs[0]->buffer();
|
|
memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
|
|
output.type = halide_type_of<float>();
|
|
|
|
// width & height
|
|
auto roi = op->main_as_RoiParameters();
|
|
output.dim[3].extent = roi->pooledWidth();
|
|
output.dim[2].extent = roi->pooledHeight();
|
|
output.dim[0].extent = inputs[1]->batch();
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
}
|
|
|
|
// backward mode, third input is backward diff, output is the grad of inputs[0]
|
|
if (inputs.size() == 3) {
|
|
TensorUtils::copyShape(inputs[0], outputs[0], true);
|
|
outputs[0]->buffer().type = inputs[0]->getType();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE(ROIPoolingComputer, OpType_ROIPooling);
|
|
} // namespace MNN
|