mirror of https://github.com/alibaba/MNN.git
129 lines
5.6 KiB
C++
129 lines
5.6 KiB
C++
//
|
|
// ShapeSlice.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
namespace MNN {
|
|
|
|
class SliceComputer : public SizeComputer {
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
//MNN_ASSERT(1 == inputs.size());
|
|
auto outputSize = (int)outputs.size();
|
|
auto slice = op->main_as_Slice();
|
|
|
|
auto& input = inputs[0]->buffer();
|
|
|
|
int axis = slice->axis();
|
|
if (axis < 0) {
|
|
axis += input.dimensions;
|
|
}
|
|
|
|
/*
|
|
If we want split (2, 10) => (2, 3) + (2, 5) + (2, 2), slicePoints is
|
|
1. [3, 8, 10] when slice->sourceType = NetSource_CAFFE
|
|
2. [3, 5, 2] otherwise
|
|
*/
|
|
if (MNN::NetSource_CAFFE == slice->sourceType()) {
|
|
// caffe Slice
|
|
int previous = 0;
|
|
for (int i = 0; i < slice->slicePoints()->size(); ++i) {
|
|
int sliceIndex = slice->slicePoints()->data()[i];
|
|
auto& output = outputs[i]->buffer();
|
|
output.dimensions = input.dimensions;
|
|
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
|
|
output.type = input.type;
|
|
output.dim[axis].extent = sliceIndex - previous;
|
|
previous = sliceIndex;
|
|
}
|
|
|
|
// Compute Last
|
|
auto& output = outputs[outputs.size() - 1]->buffer();
|
|
output.dimensions = input.dimensions;
|
|
output.type = input.type;
|
|
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
|
|
|
|
output.dim[axis].extent = input.dim[axis].extent - previous;
|
|
} else {
|
|
// tensorflow/Torch Split
|
|
if (inputs.size() == 1 && (nullptr == slice->slicePoints() || 1 == slice->slicePoints()->size())) {
|
|
// slicePoint size is 1:
|
|
// TF value is num_split, Torch value is split_size
|
|
int numSplits = outputSize,
|
|
splitDim = input.dim[axis].extent / numSplits;
|
|
if (MNN::NetSource_TORCH == slice->sourceType()) {
|
|
if (nullptr != slice->slicePoints()) {
|
|
splitDim = slice->slicePoints()->data()[0];
|
|
}
|
|
numSplits = input.dim[axis].extent / splitDim;
|
|
} else if (MNN::NetSource_TENSORFLOW == slice->sourceType()) {
|
|
if (nullptr != slice->slicePoints() && slice->slicePoints()->data()[0] != outputSize) {
|
|
numSplits = slice->slicePoints()->data()[0];
|
|
}
|
|
MNN_ASSERT(0 == input.dim[axis].extent % numSplits);
|
|
splitDim = input.dim[axis].extent / numSplits;
|
|
}
|
|
for (int i = 0; i < outputSize; i++) {
|
|
auto& output = outputs[i]->buffer();
|
|
output.dimensions = input.dimensions;
|
|
output.type = input.type;
|
|
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
|
|
output.dim[axis].extent = splitDim;
|
|
}
|
|
} else {
|
|
std::vector<int> slicePoints;
|
|
if (inputs.size() == 2) {
|
|
slicePoints.assign(inputs[1]->host<int>(), inputs[1]->host<int>() + inputs[1]->elementSize());
|
|
} else if (slice->slicePoints() != nullptr) {
|
|
slicePoints.assign(slice->slicePoints()->begin(), slice->slicePoints()->end());
|
|
}
|
|
int totalLen = std::accumulate(slicePoints.begin(), slicePoints.end(), 0);
|
|
if (totalLen > inputs[0]->length(axis)) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
int numberSplits = slicePoints.size();
|
|
MNN_ASSERT(0 < numberSplits);
|
|
numberSplits = std::min(numberSplits, outputSize);
|
|
int determineTensorIndex = -1;
|
|
int maxSize = 0;
|
|
for (int i = 0; i < numberSplits; i++) {
|
|
auto& output = outputs[i]->buffer();
|
|
output.type = input.type;
|
|
output.dimensions = input.dimensions;
|
|
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
|
|
auto length = slicePoints[i];
|
|
if (-1 != length) {
|
|
output.dim[axis].extent = length;
|
|
maxSize += length;
|
|
} else {
|
|
if (determineTensorIndex >= 0) {
|
|
// Don't support two -1 points
|
|
return false;
|
|
}
|
|
determineTensorIndex = i;
|
|
}
|
|
}
|
|
if (determineTensorIndex >= 0) {
|
|
auto& output = outputs[determineTensorIndex]->buffer();
|
|
output.dim[axis].extent = input.dim[axis].extent - maxSize;
|
|
}
|
|
}
|
|
}
|
|
for (int i=0; i<outputs.size(); ++i) {
|
|
TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE_INPUTS(SliceComputer, OpType_Slice, {1});
|
|
} // namespace MNN
|