MNN/source/shape/ShapeSpaceToDepth.cpp

50 lines
1.6 KiB
C++

//
// ShapeSpaceToDepth.cpp
// MNN
//
// Created by MNN on 2019/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
class SpaceToDepthSizeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(inputs.size() == 1);
MNN_ASSERT(outputs.size() == 1);
MNN_ASSERT(inputs[0]->buffer().dimensions == 4);
const int blockSize = op->main_as_DepthSpaceParam()->blockSize();
MNN_ASSERT(blockSize >= 1);
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
ob.dimensions = ib.dimensions;
ob.type = ib.type;
auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
ob.dim[0].extent = ib.dim[0].extent;
if (MNN_DATA_FORMAT_NHWC == format) {
ob.dim[1].extent = ib.dim[1].extent / blockSize;
ob.dim[2].extent = ib.dim[2].extent / blockSize;
ob.dim[3].extent = ib.dim[3].extent * (blockSize * blockSize);
} else {
ob.dim[3].extent = ib.dim[3].extent / blockSize;
ob.dim[2].extent = ib.dim[2].extent / blockSize;
ob.dim[1].extent = ib.dim[1].extent * (blockSize * blockSize);
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
};
REGISTER_SHAPE(SpaceToDepthSizeComputer, OpType_SpaceToDepth);
} // namespace MNN