mirror of https://github.com/alibaba/MNN.git
46 lines
1.4 KiB
C++
46 lines
1.4 KiB
C++
//
|
|
// ShapeSvd.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2022/07/14.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
#include "math.h"
|
|
|
|
namespace MNN {
|
|
|
|
class SvdComputer : public SizeComputer {
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(inputs.size() == 1 && outputs.size() == 3);
|
|
auto shape = inputs[0]->shape();
|
|
MNN_ASSERT(shape.size() == 2);
|
|
int row = shape[0];
|
|
int col = shape[1];
|
|
// int single_num = std::min(row, col);
|
|
int single_num = col;
|
|
// w is [ single_num ]
|
|
outputs[0]->buffer().dimensions = 1;
|
|
outputs[0]->setLength(0, single_num);
|
|
// u is [row, single_num ]
|
|
outputs[1]->buffer().dimensions = 2;
|
|
outputs[1]->setLength(0, row);
|
|
outputs[1]->setLength(1, single_num);
|
|
// vt is [single_num, col ]
|
|
outputs[2]->buffer().dimensions = 2;
|
|
outputs[2]->setLength(0, single_num);
|
|
outputs[2]->setLength(1, col);
|
|
for (int i = 0; i < 3; i++) {
|
|
outputs[i]->buffer().type = inputs[0]->getType();
|
|
TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE(SvdComputer, OpType_Svd);
|
|
} // namespace MNN
|