MNN/source/shape/ShapeUnpack.cpp

58 lines
1.8 KiB
C++

//
// ShapeUnpack.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
class UnpackComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
if (nullptr == op || inputs.empty() || outputs.empty()) {
// Avoid crash for special model
return false;
}
auto unpack = op->main_as_Axis();
int axis = unpack->axis();
if (axis < 0) {
axis += inputs[0]->dimensions();
}
auto &input = inputs[0]->buffer();
const int inputDimensions = input.dimensions;
MNN_ASSERT(1 <= inputDimensions);
int32_t outDims[MNN_MAX_TENSOR_DIM];
if (outputs.size() > input.dim[axis].extent) {
return false;
}
for (int i = 0; i < axis; i++) {
outDims[i] = input.dim[i].extent;
}
for (int i = axis + 1; i < inputDimensions; i++) {
outDims[i - 1] = input.dim[i].extent;
}
const int outputDimensions = inputDimensions - 1;
for (int i = 0; i < outputs.size(); i++) {
auto &output = outputs[i]->buffer();
output.dimensions = outputDimensions;
output.type = input.type;
for (int j = 0; j < outputDimensions; j++) {
output.dim[j].extent = outDims[j];
}
TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
}
return true;
}
};
REGISTER_SHAPE(UnpackComputer, OpType_Unpack);
} // namespace MNN