mirror of https://github.com/alibaba/MNN.git
291 lines
10 KiB
C++
291 lines
10 KiB
C++
//
|
|
// SizeComputer.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include <stdlib.h>
|
|
#include <mutex>
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "utils/InitNet.hpp"
|
|
// #define MNN_DEBUG_TENSOR_SIZE
|
|
namespace MNN {
|
|
void registerShapeOps();
|
|
SizeComputerSuite* SizeComputerSuite::gInstance = nullptr;
|
|
|
|
SizeComputerSuite::~SizeComputerSuite() {
|
|
for (auto& iter : mRegistry) {
|
|
delete iter;
|
|
}
|
|
}
|
|
|
|
void SizeComputerSuite::init() {
|
|
if (nullptr != gInstance) {
|
|
return;
|
|
}
|
|
gInstance = new SizeComputerSuite;
|
|
gInstance->mRegistry.resize(OpType_MAX + 1);
|
|
::memset(gInstance->mRegistry.data(), 0, gInstance->mRegistry.size() * sizeof(SizeComputer*));
|
|
registerShapeOps();
|
|
}
|
|
|
|
SizeComputerSuite* SizeComputerSuite::get() {
|
|
return gInstance;
|
|
}
|
|
|
|
void SizeComputerSuite::insert(SizeComputer* t, OpType type) {
|
|
mRegistry[type] = t;
|
|
}
|
|
|
|
SizeComputer* SizeComputerSuite::search(OpType name) {
|
|
auto iter = mRegistry[name];
|
|
if (iter == nullptr) {
|
|
return nullptr;
|
|
}
|
|
return iter;
|
|
}
|
|
float SizeComputer::onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const {
|
|
MNN_ASSERT(outputs.size() >= 1);
|
|
return (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
|
|
}
|
|
|
|
float SizeComputer::computeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) {
|
|
auto computeFactory = SizeComputerSuite::get();
|
|
auto computer = computeFactory->search(op->type());
|
|
if (nullptr != computer) {
|
|
return computer->onComputeFlops(op, inputs, outputs);
|
|
}
|
|
if (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {
|
|
auto sumFlops = 0.0f;
|
|
auto loop = op->main_as_LoopParam();
|
|
if (nullptr != loop->commands()) {
|
|
auto cmdSize = loop->commands()->size();
|
|
for (int i=0; i<cmdSize; ++i) {
|
|
auto cmd = loop->commands()->GetAs<RegionCommand>(i);
|
|
auto size = cmd->size()->data();
|
|
sumFlops += (float)size[0] * (float)size[1] * (float)size[2];
|
|
}
|
|
}
|
|
sumFlops *= (float)loop->loopNumber();
|
|
return sumFlops / 1024.0f / 1024.0f;
|
|
}
|
|
auto sumFlops = 0.0f;
|
|
for (auto output : outputs) {
|
|
sumFlops += (float)output->elementSize() / 1024.0f / 1024.0f;
|
|
}
|
|
return sumFlops;
|
|
}
|
|
#ifdef MNN_DEBUG_TENSOR_SIZE
|
|
static void _printShape(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) {
|
|
if (op->name() != nullptr) {
|
|
MNN_PRINT("===> compute shape: %s, [%s]\n", op->name()->c_str(), MNN::EnumNameOpType(op->type()));
|
|
} else {
|
|
MNN_PRINT("===> compute shape:[%s]\n", MNN::EnumNameOpType(op->type()));
|
|
}
|
|
if (inputs.size()) {
|
|
MNN_PRINT("\tInputs:\n");
|
|
for (auto o : inputs) {
|
|
MNN_PRINT("\tptr=%p, format=%s, datatype=%d;\t", o, EnumNameMNN_DATA_FORMAT(TensorUtils::getDescribe(o)->dimensionFormat), o->getType().code);
|
|
if (o->dimensions() == 0) {
|
|
MNN_PRINT("\t*Scalar*");
|
|
}
|
|
for (int i = 0; i < o->dimensions(); ++i) {
|
|
MNN_PRINT("%d, ", o->length(i));
|
|
}
|
|
MNN_PRINT("\n");
|
|
}
|
|
}
|
|
MNN_PRINT("\tOutputs:\n");
|
|
for (auto o : outputs) {
|
|
MNN_PRINT("\tptr=:%p, format=%s, datatype=%d;\t",o, EnumNameMNN_DATA_FORMAT(TensorUtils::getDescribe(o)->dimensionFormat), o->getType().code);
|
|
if (o->dimensions() == 0) {
|
|
MNN_PRINT("\t*Scalar*");
|
|
}
|
|
for (int i = 0; i < o->dimensions(); ++i) {
|
|
MNN_PRINT("%d, ", o->length(i));
|
|
}
|
|
MNN_PRINT("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
bool SizeComputer::computeOutputSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) {
|
|
auto computeFactory = SizeComputerSuite::get();
|
|
// When op is nullptr, it means a copy op
|
|
if (nullptr != op) {
|
|
if (op->main_type() == OpParameter_Blob) {
|
|
computeShapeForBlob(op->main_as_Blob(), outputs[0]);
|
|
return true;
|
|
}
|
|
// For Loop Op
|
|
if (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {
|
|
auto loop = op->main_as_LoopParam();
|
|
if (loop->extraTensorInfos() == nullptr) {
|
|
return false;
|
|
}
|
|
MNN_ASSERT(loop->extraTensorInfos()->size() == outputs.size());
|
|
for (int i=0; i<outputs.size(); ++i) {
|
|
auto des = loop->extraTensorInfos()->GetAs<TensorDescribe>(i);
|
|
MNN_ASSERT(des->blob() != nullptr);
|
|
auto blob = des->blob();
|
|
TensorUtils::getDescribe(outputs[i])->dimensionFormat = blob->dataFormat();
|
|
outputs[i]->setType(blob->dataType());
|
|
if (blob->dims() != nullptr) {
|
|
auto dims = blob->dims()->data();
|
|
outputs[i]->buffer().dimensions = blob->dims()->size();
|
|
for (int j=0; j<blob->dims()->size(); ++j) {
|
|
outputs[i]->setLength(j, dims[j]);
|
|
}
|
|
} else {
|
|
outputs[i]->buffer().dimensions = 0;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Don't support compute shape for control flow op
|
|
if (op->type() == OpType_While || op->type() == OpType_If) {
|
|
return false;
|
|
}
|
|
// Check -1 input
|
|
for (auto& t : inputs) {
|
|
for (int i=0; i < t->dimensions(); ++i) {
|
|
if (t->length(i) < 0) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
auto computer = computeFactory->search(op->type());
|
|
if (nullptr != computer) {
|
|
bool ret = computer->onComputeSize(op, inputs, outputs);
|
|
#ifdef MNN_DEBUG_TENSOR_SIZE
|
|
_printShape(op, inputs, outputs);
|
|
#endif
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
// Default Set to the same
|
|
if (inputs.size() >= 1 && (outputs.size() == 1 || outputs.size() == inputs.size())) {
|
|
if (inputs[0] == outputs[0]) {
|
|
return true;
|
|
}
|
|
for (int i=0; i<outputs.size(); ++i) {
|
|
const auto& ib = inputs[i]->buffer();
|
|
auto& ob = outputs[i]->buffer();
|
|
memcpy(ob.dim, ib.dim, sizeof(halide_dimension_t) * ib.dimensions);
|
|
ob.dimensions = ib.dimensions;
|
|
ob.type = ib.type;
|
|
TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[i])->dimensionFormat;
|
|
}
|
|
#ifdef MNN_DEBUG_TENSOR_SIZE
|
|
_printShape(op, inputs, outputs);
|
|
#endif
|
|
return true;
|
|
}
|
|
// Not Support
|
|
MNN_PRINT("Can't compute size for %d, name=%s\n", op->type(), op->name() ? op->name()->c_str() : "");
|
|
|
|
return false;
|
|
}
|
|
|
|
std::vector<int> SizeComputer::needInputContent(const MNN::Op* op, int inputSize) {
|
|
auto computeFactory = SizeComputerSuite::get();
|
|
// When op is nullptr, it means a copy op
|
|
if (nullptr != op) {
|
|
// when hasOutputShape = true, deconv last is outputShape
|
|
if (op->type() == OpType_Deconvolution && op->main_as_Convolution2D() && op->main_as_Convolution2D()->common()) {
|
|
if (op->main_as_Convolution2D()->common()->hasOutputShape()) {
|
|
return std::vector<int>{ inputSize - 1 };
|
|
}
|
|
}
|
|
if (inputSize > 1 && (op->type() == OpType_Squeeze || op->type() == OpType_Unsqueeze || op->type() == OpType_ReverseSequence || op->type() == OpType_Reverse)) {
|
|
return std::vector<int>{1};
|
|
}
|
|
if (op->type() == OpType_CumSum) {
|
|
return std::vector<int>{1};
|
|
}
|
|
#ifdef MNN_SUPPORT_RENDER
|
|
if (op->type() == OpType_RasterAndInterpolate) {
|
|
int type = 4;
|
|
if (op->main_type() == OpParameter_Extra) {
|
|
auto extra = op->main_as_Extra();
|
|
if (nullptr != extra->attr()) {
|
|
for (int i=0; i<extra->attr()->size(); ++i) {
|
|
auto attr = extra->attr()->GetAs<Attribute>(i);
|
|
if (attr->key()->str() == "primitiveType") {
|
|
type = attr->i();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (type <= 4) {
|
|
return std::vector<int>{0};
|
|
}
|
|
return std::vector<int>{};
|
|
}
|
|
#endif
|
|
auto computer = computeFactory->search(op->type());
|
|
if (nullptr != computer) {
|
|
return computer->mNeedContentInputIndex;
|
|
}
|
|
}
|
|
return std::vector<int>{};
|
|
}
|
|
bool SizeComputer::computeBroadCastDims(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) {
|
|
int maxDimensions = inputs[0]->dimensions();
|
|
int maxIndex = 0;
|
|
for (int index=1; index < inputs.size(); ++index) {
|
|
if (inputs[index]->dimensions() > maxDimensions) {
|
|
maxDimensions = inputs[index]->dimensions();
|
|
maxIndex = index;
|
|
}
|
|
}
|
|
int outputDims[MNN_MAX_TENSOR_DIM];
|
|
for (int i = 0; i < maxDimensions; i++) {
|
|
outputDims[i] = inputs[maxIndex]->length(i);
|
|
}
|
|
for (int index=0; index < inputs.size(); ++index) {
|
|
if (index == maxIndex) {
|
|
continue;
|
|
}
|
|
auto input1 = inputs[index];
|
|
auto input0 = inputs[maxIndex];
|
|
const int diffDimension = maxDimensions - input1->dimensions();
|
|
for (int i = diffDimension; i < maxDimensions; i++) {
|
|
const int input1Index = i - diffDimension;
|
|
int dim1 = input1->buffer().dim[input1Index].extent;
|
|
if (dim1 != outputDims[i] && (dim1 != 1 && outputDims[i] != 1)) {
|
|
MNN_ERROR("Broad cast error, dim1 = %d, dim2 = %d\n", dim1, outputDims[i]);
|
|
return false;
|
|
}
|
|
if (dim1 == outputDims[i]) {
|
|
continue;
|
|
}
|
|
if (dim1 != outputDims[i] && (dim1 == 1 || outputDims[i] == 1)) {
|
|
outputDims[i] = outputDims[i] * dim1;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
auto& ob = outputs[0]->buffer();
|
|
ob.dimensions = maxDimensions;
|
|
for (int i = 0; i < maxDimensions; i++) {
|
|
ob.dim[i].extent = outputDims[i];
|
|
}
|
|
return true;
|
|
}
|
|
} // namespace MNN
|