mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			74 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeConvTranspose3D.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <math.h>
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| namespace MNN {
 | |
| class ConvTranspose3DSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
| //            MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         auto layer        = op->main_as_Convolution3D()->common();
 | |
|         auto input = inputs[0];
 | |
|         int dimensions = input->dimensions();
 | |
|         int convolutinDim = dimensions - 2;
 | |
| 
 | |
|         auto& outputBuffer         = outputs[0]->buffer();
 | |
|         outputBuffer.dimensions    = input->buffer().dimensions;
 | |
|         outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | |
|         outputBuffer.dim[1].extent = layer->outputCount();
 | |
| 
 | |
|         for (int i = 0; i < convolutinDim; ++i) {
 | |
|             const int inputLength = input->length(i + 2), stride = (*layer->strides())[i];
 | |
|             if (inputLength <= 0) {
 | |
|                 return false;
 | |
|             }
 | |
|             int outputLength;
 | |
|             if (layer->padMode() == PadMode_SAME) {
 | |
|                 outputLength =inputLength * stride;
 | |
|             } else {
 | |
|                 int padL = 0;
 | |
|                 int padR = 0;
 | |
|                 int kernel = layer->kernels()->data()[i];
 | |
|                 int dialate = 1;
 | |
|                 if (nullptr != layer->pads()) {
 | |
|                     padL = layer->pads()->data()[i];
 | |
|                     if (layer->pads()->size() == 6) {
 | |
|                         padR = layer->pads()->data()[i + 3];
 | |
|                     } else {
 | |
|                         padR = padL;
 | |
|                     }
 | |
|                 }
 | |
|                 if (nullptr != layer->dilates()) {
 | |
|                     dialate = layer->dilates()->data()[i];
 | |
|                 }
 | |
|                 const int dialatedKernel = (kernel - 1) * dialate + 1;
 | |
| //                    outputLength = (inputLength + 2 * pad - dialatedKernel) / stride + 1;
 | |
|                 outputLength = (inputLength - 1) * stride + dialatedKernel - padR - padL;
 | |
|                 if (layer->outPads() != nullptr) {
 | |
|                     outputLength = outputLength + layer->outPads()->data()[i];
 | |
|                 }
 | |
|             }
 | |
|             outputBuffer.dim[i + 2].extent = outputLength;
 | |
|         }
 | |
| 
 | |
|         outputBuffer.type = input->getType();
 | |
| 
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(ConvTranspose3DSizeComputer, OpType_ConvTranspose3D);
 | |
| } // namespace MNN
 |