mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			61 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeExpandDims.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| class ExpandDimsComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         const int inputSize = (int)inputs.size();
 | |
|         MNN_ASSERT(2 == inputSize || 1 == inputSize);
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         auto input  = inputs[0];
 | |
|         auto output = outputs[0];
 | |
| 
 | |
|         // default -1
 | |
|         int dim = -1;
 | |
|         if (inputSize == 2) {
 | |
|             // read dim from the second input
 | |
|             auto dims = inputs[1];
 | |
|             dim       = dims->host<int32_t>()[0];
 | |
|         } else {
 | |
|             // get dim from expand_dims parameter(axis)
 | |
|             auto param = op->main_as_ExpandDims();
 | |
|             dim        = param->axis();
 | |
|         }
 | |
| 
 | |
|         if (dim < 0) {
 | |
|             dim = input->dimensions() + 1 + dim;
 | |
|         }
 | |
|         output->buffer().type       = input->buffer().type;
 | |
|         int outputShapeDims = 0;
 | |
| 
 | |
|         for (int i = 0; i < input->buffer().dimensions; i++) {
 | |
|             if (i == dim) {
 | |
|                 output->buffer().dim[outputShapeDims++].extent = 1;
 | |
|             }
 | |
|             output->buffer().dim[outputShapeDims++].extent = input->buffer().dim[i].extent;
 | |
|         }
 | |
|         if (dim == input->buffer().dimensions) {
 | |
|             output->buffer().dim[outputShapeDims++].extent = 1;
 | |
|         }
 | |
|         output->buffer().dimensions = outputShapeDims;
 | |
|         TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE_INPUTS(ExpandDimsComputer, OpType_ExpandDims, {1});
 | |
| 
 | |
| } // namespace MNN
 |