mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			37 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			37 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeInnerProduct.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| class InnerProductComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         auto output    = outputs[0];
 | |
|         auto input     = inputs[0];
 | |
|         auto parameter = op->main_as_InnerProduct();
 | |
| 
 | |
|         MNN_ASSERT(2 == input->buffer().dimensions);
 | |
|         output->buffer().dimensions    = input->buffer().dimensions;
 | |
|         output->buffer().dim[0].extent = input->buffer().dim[0].extent;
 | |
|         output->buffer().dim[1].extent = parameter->outputCount();
 | |
|         output->buffer().type = halide_type_of<float>();
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(InnerProductComputer, OpType_InnerProduct);
 | |
| } // namespace MNN
 |