mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			125 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeInterp.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| // Size Computer
 | |
| class InterpComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         auto& input         = inputs[0]->buffer(); // input tensor(data)
 | |
|         auto& output        = outputs[0]->buffer();
 | |
|         int w               = 0;
 | |
|         int h               = 0;
 | |
|         const int inputSize = (int)inputs.size();
 | |
|         auto iw = inputs[0]->width();
 | |
|         auto ih = inputs[0]->height();
 | |
|         // copy dims
 | |
|         memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
 | |
|         outputs[0]->buffer().dimensions = inputs[0]->dimensions();
 | |
|         outputs[0]->buffer().type = inputs[0]->getType();
 | |
|         auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = format;
 | |
|         if (2 == inputSize) {
 | |
|             auto shape = inputs[1]; // input shape(shape)
 | |
|             if(shape->length(0) == input.dimensions) {
 | |
|                 // For Onnx's Resize
 | |
|                 // Don't support batch / channel resize
 | |
|                 for (int i=0; i<2; ++i) {
 | |
|                     output.dim[i].extent = input.dim[i].extent;
 | |
|                 }
 | |
|                 if (shape->getType().code == halide_type_int) {
 | |
|                     // Width / Height
 | |
|                     auto shapePtr = shape->host<int>();
 | |
|                     for (int i=2; i<input.dimensions; ++i) {
 | |
|                         output.dim[i].extent = shapePtr[i];
 | |
|                     }
 | |
|                 } else {
 | |
|                     // Scale
 | |
|                     auto scalePtr = shape->host<float>();
 | |
|                     for (int i=2; i<input.dimensions; ++i) {
 | |
|                         output.dim[i].extent = (scalePtr[i] * (float)input.dim[i].extent);
 | |
|                     }
 | |
|                 }
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|         if (1 == inputSize) {
 | |
|             // For old mnn model from onnx
 | |
|             auto interp = op->main_as_Interp();
 | |
|             // get output dims
 | |
|             w = interp->outputWidth();
 | |
|             h = interp->outputHeight();
 | |
|             if (w == 0 || h == 0) {
 | |
|                 w = iw * interp->widthScale();
 | |
|                 h = ih * interp->heightScale();
 | |
|             }
 | |
|         } else {
 | |
|             // For mnn model from tensorflow
 | |
|             auto shape = inputs[1]; // input shape(shape)
 | |
|             // Tensorflow's interp: h, w
 | |
|             if(2 != shape->buffer().dim[0].extent) {
 | |
|                 MNN_ERROR("Tensorflow's interp's shape should be length two\n");
 | |
|                 return false;
 | |
|             }
 | |
|             if (shape->getType().code == halide_type_float) {
 | |
|                 const float *shapeData = shape->host<float>();
 | |
|                 w                      = shapeData[1];
 | |
|                 h                      = shapeData[0];
 | |
|             } else {
 | |
|                 const int32_t *shapeData = shape->host<int32_t>();
 | |
|                 w                        = shapeData[1];
 | |
|                 h                        = shapeData[0];
 | |
|             }
 | |
|         }
 | |
|         if (0 == w && 0 == h) {
 | |
|             return false;
 | |
|         }
 | |
|         if (MNN_DATA_FORMAT_NHWC == format) {
 | |
|             output.dim[2].extent     = w;
 | |
|             output.dim[1].extent     = h;
 | |
|         } else {
 | |
|             output.dim[3].extent     = w;
 | |
|             output.dim[2].extent     = h;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         auto elementInM = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
 | |
|         auto interp     = op->main_as_Interp();
 | |
|         auto unit       = 0;
 | |
|         int dimensions = inputs[0]->dimensions();
 | |
|         int interpDims = dimensions - 2;
 | |
|         switch (interp->resizeType()) {
 | |
|             case 1:
 | |
|             case 4:
 | |
|                 unit = 1;
 | |
|                 break;
 | |
|             case 2:
 | |
|                 unit = (1 << interpDims);
 | |
|                 break;
 | |
|             case 3:
 | |
|                 unit = (4 << interpDims);
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|         }
 | |
|         return unit * elementInM;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE_INPUTS(InterpComputer, OpType_Interp, {1});
 | |
| } // namespace MNN
 |