mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			100 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapePool.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| class PoolSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         auto input  = inputs[0];
 | |
|         auto output = outputs[0];
 | |
| 
 | |
|         ::memcpy(output->buffer().dim, input->buffer().dim, input->buffer().dimensions * sizeof(halide_dimension_t));
 | |
|         output->buffer().dimensions = input->dimensions();
 | |
| 
 | |
|         auto layer = op->main_as_Pool();
 | |
|         int outw   = 1;
 | |
|         int outh   = 1;
 | |
|         if (!layer->isGlobal()) {
 | |
|             // when given explicit pad value in tensorflow mode pool, size compute will fast failed to help find problem
 | |
|             if ((layer->padType() == PoolPadType_VALID || layer->padType() == PoolPadType_SAME) && (layer->padX() != 0 || layer->padY() != 0)) {
 | |
|                 MNN_PRINT("tensorflow mode pool should not have explict pad value\n");
 | |
|                 return false;
 | |
|             }
 | |
|             int w = input->width();
 | |
|             int h = input->height();
 | |
|             if (nullptr != layer->pads()) {
 | |
|                 // pads = 2, just add padh_h, padh_l
 | |
|                 if (layer->pads()->size() == 2) {
 | |
|                     h += (layer->pads()->data()[0] + layer->pads()->data()[1]);
 | |
|                 }
 | |
|                 // pads = 4, add padh_h, padh_l, padw_l, padw_r
 | |
|                 if (layer->pads()->size() == 4) {
 | |
|                     w += (layer->pads()->data()[1] + layer->pads()->data()[3]);
 | |
|                     h += (layer->pads()->data()[0] + layer->pads()->data()[2]);
 | |
|                 }
 | |
|             } else {
 | |
|                 w += layer->padX() * 2;
 | |
|                 h += layer->padY() * 2;
 | |
|             }
 | |
|             int kernelWidth  = std::min(layer->kernelX(), w);
 | |
|             int kernelHeight = std::min(layer->kernelY(), h);
 | |
| 
 | |
|             if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
 | |
|                 outw = ceil((float)w / (float)layer->strideX());
 | |
|                 outh = ceil((float)h / (float)layer->strideY());
 | |
|             } else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
 | |
|                 outw = ceil((float)(w - kernelWidth + 1) / (float)layer->strideX());
 | |
|                 outh = ceil((float)(h - kernelHeight + 1) / (float)layer->strideY());
 | |
|             } else {
 | |
|                 if (layer->ceilModel()) {
 | |
|                     outw = UP_DIV(w - kernelWidth, layer->strideX()) + 1;
 | |
|                     outh = UP_DIV(h - kernelHeight, layer->strideY()) + 1;
 | |
|                 } else {
 | |
|                     outw = floor((w - kernelWidth) / layer->strideX() + 1);
 | |
|                     outh = floor((h - kernelHeight) / layer->strideY() + 1);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (outw <= 0 || outh <= 0) {
 | |
|             return false;
 | |
|         }
 | |
|         auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         if (format == MNN_DATA_FORMAT_NHWC) {
 | |
|             output->buffer().dim[2].extent = outw;
 | |
|             output->buffer().dim[1].extent = outh;
 | |
|         } else {
 | |
|             output->buffer().dim[3].extent = outw;
 | |
|             output->buffer().dim[2].extent = outh;
 | |
|         }
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = format;
 | |
|         output->buffer().type          = input->buffer().type;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         auto size  = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
 | |
|         auto layer = op->main_as_Pool();
 | |
|         return size * layer->kernelX() * layer->kernelY();
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(PoolSizeComputer, OpType_Pooling);
 | |
| REGISTER_SHAPE(PoolSizeComputer, OpType_PoolInt8);
 | |
| } // namespace MNN
 |