mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			74 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeReduction.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| static int _getRealAxis(int axis, int n) {
 | |
|     if (axis < 0) {
 | |
|         return axis + n;
 | |
|     }
 | |
|     return axis;
 | |
| }
 | |
| class ReductionComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         auto output                                       = outputs[0];
 | |
|         TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         auto reduce                                       = op->main_as_ReductionParam();
 | |
|         output->buffer().type = inputs[0]->buffer().type;
 | |
|         if (nullptr == reduce->dim() && inputs.size() == 1) {
 | |
|             output->buffer().dimensions = 0;
 | |
|             return true;
 | |
|         }
 | |
|         uint8_t reduceMask[MNN_MAX_TENSOR_DIM];
 | |
|         ::memset(reduceMask, 0, sizeof(uint8_t) * MNN_MAX_TENSOR_DIM);
 | |
|         if (nullptr != reduce->dim()) {
 | |
|             for (int i = 0; i < reduce->dim()->size(); ++i) {
 | |
|                 reduceMask[_getRealAxis(reduce->dim()->data()[i], inputs[0]->dimensions())] = 1;
 | |
|             }
 | |
|         } else {
 | |
|             auto input1 = inputs[1];
 | |
|             auto size   = input1->elementSize();
 | |
|             auto dims   = input1->host<int32_t>();
 | |
|             for (int i = 0; i < size; ++i) {
 | |
|                 reduceMask[_getRealAxis(dims[i], inputs[0]->dimensions())] = 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         auto input                = inputs[0];
 | |
|         const int inputDimensions = input->dimensions();
 | |
| 
 | |
|         int offset = 0;
 | |
|         for (int i = 0; i < inputDimensions; ++i) {
 | |
|             if (1 == reduceMask[i]) {
 | |
|                 if (reduce->keepDims()) {
 | |
|                     output->buffer().dim[offset].extent = 1;
 | |
|                     offset++;
 | |
|                 }
 | |
|                 continue;
 | |
|             }
 | |
|             output->buffer().dim[offset].extent = input->length(i);
 | |
|             offset++;
 | |
|         }
 | |
|         output->buffer().dimensions = offset;
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE_INPUTS(ReductionComputer, OpType_Reduction, {1});
 | |
| } // namespace MNN
 |