mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			83 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeResize.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| // Size Computer
 | |
| class ResizeComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                const std::vector<Tensor *> &outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         // copy dims
 | |
|         auto resize  = op->main_as_Resize();
 | |
|         auto &input  = inputs[0]->buffer();
 | |
|         auto &output = outputs[0]->buffer();
 | |
|         TensorUtils::copyShape(inputs[0], outputs[0], true);
 | |
| 
 | |
|         // set dims
 | |
|         output.dim[3].extent = input.dim[3].extent * resize->xScale();
 | |
|         output.dim[2].extent = input.dim[2].extent * resize->yScale();
 | |
|         output.type = inputs[0]->getType();
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
|     virtual float onComputeFlops(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                  const std::vector<Tensor *> &outputs) const override {
 | |
|         return (float)outputs[0]->elementSize() / 1024.0f / 1024.0f * 4;
 | |
|     }
 | |
| };
 | |
| 
 | |
| class ImageProcessComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                const std::vector<Tensor *> &outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size() || inputs.size() == 3);
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
|         if (inputs.size() == 3) {
 | |
|             auto &output = outputs[0]->buffer();
 | |
|             output.dimensions = 1;
 | |
|             output.dim[0].extent = 1;
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // copy dims
 | |
|         auto &input  = inputs[0]->buffer();
 | |
|         auto &output = outputs[0]->buffer();
 | |
|         TensorUtils::copyShape(inputs[0], outputs[0], true);
 | |
| 
 | |
|         // set dims
 | |
|         auto process  = op->main_as_ImageProcessParam();
 | |
|         int c = process->shape()->Get(1);
 | |
|         int h = process->shape()->Get(2);
 | |
|         int w = process->shape()->Get(3);
 | |
|         if (MNN_DATA_FORMAT_NHWC == TensorUtils::getDescribe(inputs[0])->dimensionFormat) {
 | |
|             output.dim[1].extent = h;
 | |
|             output.dim[2].extent = w;
 | |
|             output.dim[3].extent = c;
 | |
|         } else {
 | |
|             output.dim[1].extent = c;
 | |
|             output.dim[2].extent = h;
 | |
|             output.dim[3].extent = w;
 | |
|         }
 | |
|         // set dtype
 | |
|         outputs[0]->setType(process->outputType());
 | |
|         return true;
 | |
|     }
 | |
|     virtual float onComputeFlops(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                  const std::vector<Tensor *> &outputs) const override {
 | |
|         return (float)outputs[0]->elementSize() / 1024.0f / 1024.0f * 4;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(ResizeComputer, OpType_Resize);
 | |
| REGISTER_SHAPE(ImageProcessComputer, OpType_ImageProcess);
 | |
| } // namespace MNN
 |