mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			129 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			129 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeSlice.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include <algorithm>
 | |
| #include <numeric>
 | |
| namespace MNN {
 | |
| 
 | |
| class SliceComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         //MNN_ASSERT(1 == inputs.size());
 | |
|         auto outputSize = (int)outputs.size();
 | |
|         auto slice = op->main_as_Slice();
 | |
| 
 | |
|         auto& input = inputs[0]->buffer();
 | |
| 
 | |
|         int axis = slice->axis();
 | |
|         if (axis < 0) {
 | |
|             axis += input.dimensions;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          If we want split (2, 10) => (2, 3) + (2, 5) + (2, 2), slicePoints is
 | |
|          1. [3, 8, 10] when slice->sourceType = NetSource_CAFFE
 | |
|          2. [3, 5, 2] otherwise
 | |
|          */
 | |
|         if (MNN::NetSource_CAFFE == slice->sourceType()) {
 | |
|             // caffe Slice
 | |
|             int previous = 0;
 | |
|             for (int i = 0; i < slice->slicePoints()->size(); ++i) {
 | |
|                 int sliceIndex    = slice->slicePoints()->data()[i];
 | |
|                 auto& output      = outputs[i]->buffer();
 | |
|                 output.dimensions = input.dimensions;
 | |
|                 ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | |
|                 output.type             = input.type;
 | |
|                 output.dim[axis].extent = sliceIndex - previous;
 | |
|                 previous                = sliceIndex;
 | |
|             }
 | |
| 
 | |
|             // Compute Last
 | |
|             auto& output = outputs[outputs.size() - 1]->buffer();
 | |
|             output.dimensions = input.dimensions;
 | |
|             output.type             = input.type;
 | |
|             ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | |
| 
 | |
|             output.dim[axis].extent = input.dim[axis].extent - previous;
 | |
|         } else {
 | |
|             // tensorflow/Torch Split
 | |
|             if (inputs.size() == 1 && (nullptr == slice->slicePoints() || 1 == slice->slicePoints()->size())) {
 | |
|                 // slicePoint size is 1:
 | |
|                 // TF value is num_split, Torch value is split_size
 | |
|                 int numSplits = outputSize,
 | |
|                     splitDim = input.dim[axis].extent / numSplits;
 | |
|                 if (MNN::NetSource_TORCH == slice->sourceType()) {
 | |
|                     if (nullptr != slice->slicePoints()) {
 | |
|                         splitDim = slice->slicePoints()->data()[0];
 | |
|                     }
 | |
|                     numSplits = input.dim[axis].extent / splitDim;
 | |
|                 } else if (MNN::NetSource_TENSORFLOW == slice->sourceType()) {
 | |
|                     if (nullptr != slice->slicePoints() && slice->slicePoints()->data()[0] != outputSize) {
 | |
|                         numSplits = slice->slicePoints()->data()[0];
 | |
|                     }
 | |
|                     MNN_ASSERT(0 == input.dim[axis].extent % numSplits);
 | |
|                     splitDim = input.dim[axis].extent / numSplits;
 | |
|                 }
 | |
|                 for (int i = 0; i < outputSize; i++) {
 | |
|                     auto& output      = outputs[i]->buffer();
 | |
|                     output.dimensions = input.dimensions;
 | |
|                     output.type       = input.type;
 | |
|                     ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | |
|                     output.dim[axis].extent = splitDim;
 | |
|                 }
 | |
|             } else {
 | |
|                 std::vector<int> slicePoints;
 | |
|                 if (inputs.size() == 2) {
 | |
|                     slicePoints.assign(inputs[1]->host<int>(), inputs[1]->host<int>() + inputs[1]->elementSize());
 | |
|                 } else if (slice->slicePoints() != nullptr) {
 | |
|                     slicePoints.assign(slice->slicePoints()->begin(), slice->slicePoints()->end());
 | |
|                 }
 | |
|                 int totalLen = std::accumulate(slicePoints.begin(), slicePoints.end(), 0);
 | |
|                 if (totalLen > inputs[0]->length(axis)) {
 | |
|                     MNN_ASSERT(false);
 | |
|                     return false;
 | |
|                 }
 | |
|                 int numberSplits = slicePoints.size();
 | |
|                 MNN_ASSERT(0 < numberSplits);
 | |
|                 numberSplits = std::min(numberSplits, outputSize);
 | |
|                 int determineTensorIndex = -1;
 | |
|                 int maxSize              = 0;
 | |
|                 for (int i = 0; i < numberSplits; i++) {
 | |
|                     auto& output      = outputs[i]->buffer();
 | |
|                     output.type       = input.type;
 | |
|                     output.dimensions = input.dimensions;
 | |
|                     ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | |
|                     auto length = slicePoints[i];
 | |
|                     if (-1 != length) {
 | |
|                         output.dim[axis].extent = length;
 | |
|                         maxSize += length;
 | |
|                     } else {
 | |
|                         if (determineTensorIndex >= 0) {
 | |
|                             // Don't support two -1 points
 | |
|                             return false;
 | |
|                         }
 | |
|                         determineTensorIndex = i;
 | |
|                     }
 | |
|                 }
 | |
|                 if (determineTensorIndex >= 0) {
 | |
|                     auto& output            = outputs[determineTensorIndex]->buffer();
 | |
|                     output.dim[axis].extent = input.dim[axis].extent - maxSize;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         for (int i=0; i<outputs.size(); ++i) {
 | |
|             TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE_INPUTS(SliceComputer, OpType_Slice, {1});
 | |
| } // namespace MNN
 |