mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			265 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  SizeComputer.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include <stdlib.h>
 | |
| #include <mutex>
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| // #define MNN_DEBUG_TENSOR_SIZE
 | |
| namespace MNN {
 | |
| void registerShapeOps();
 | |
| SizeComputerSuite* SizeComputerSuite::gInstance = nullptr;
 | |
| 
 | |
| SizeComputerSuite::~SizeComputerSuite() {
 | |
|     for (auto& iter : mRegistry) {
 | |
|         delete iter;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SizeComputerSuite::init() {
 | |
|     if (nullptr != gInstance) {
 | |
|         return;
 | |
|     }
 | |
|     gInstance = new SizeComputerSuite;
 | |
|     gInstance->mRegistry.resize(OpType_MAX + 1);
 | |
|     ::memset(gInstance->mRegistry.data(), 0, gInstance->mRegistry.size() * sizeof(SizeComputer*));
 | |
|     registerShapeOps();
 | |
| }
 | |
| 
 | |
| SizeComputerSuite* SizeComputerSuite::get() {
 | |
|     return gInstance;
 | |
| }
 | |
| 
 | |
| void SizeComputerSuite::insert(SizeComputer* t, OpType type) {
 | |
|     mRegistry[type] = t;
 | |
| }
 | |
| 
 | |
| SizeComputer* SizeComputerSuite::search(OpType name) {
 | |
|     auto iter = mRegistry[name];
 | |
|     if (iter == nullptr) {
 | |
|         return nullptr;
 | |
|     }
 | |
|     return iter;
 | |
| }
 | |
| float SizeComputer::onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                    const std::vector<Tensor*>& outputs) const {
 | |
|     MNN_ASSERT(outputs.size() >= 1);
 | |
|     return (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
 | |
| }
 | |
| 
 | |
| float SizeComputer::computeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) {
 | |
|     auto computeFactory = SizeComputerSuite::get();
 | |
|     auto computer       = computeFactory->search(op->type());
 | |
|     if (nullptr != computer) {
 | |
|         return computer->onComputeFlops(op, inputs, outputs);
 | |
|     }
 | |
|     if (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {
 | |
|         auto sumFlops = 0.0f;
 | |
|         auto loop = op->main_as_LoopParam();
 | |
|         if (nullptr != loop->commands()) {
 | |
|             auto cmdSize = loop->commands()->size();
 | |
|             for (int i=0; i<cmdSize; ++i) {
 | |
|                 auto cmd = loop->commands()->GetAs<RegionCommand>(i);
 | |
|                 auto size = cmd->size()->data();
 | |
|                 sumFlops += (float)size[0] * (float)size[1] * (float)size[2];
 | |
|             }
 | |
|         }
 | |
|         sumFlops *= (float)loop->loopNumber();
 | |
|         return sumFlops / 1024.0f / 1024.0f;
 | |
|     }
 | |
|     auto sumFlops = 0.0f;
 | |
|     for (auto output : outputs) {
 | |
|         sumFlops += (float)output->elementSize() / 1024.0f / 1024.0f;
 | |
|     }
 | |
|     return sumFlops;
 | |
| }
 | |
| #ifdef MNN_DEBUG_TENSOR_SIZE
 | |
| static void _printShape(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                         const std::vector<Tensor*>& outputs) {
 | |
|     if (op->name() != nullptr) {
 | |
|         MNN_PRINT("===> compute shape: %s, [%s]\n", op->name()->c_str(), MNN::EnumNameOpType(op->type()));
 | |
|     } else {
 | |
|         MNN_PRINT("===> compute shape:[%s]\n", MNN::EnumNameOpType(op->type()));
 | |
|     }
 | |
|     if (inputs.size()) {
 | |
|         MNN_PRINT("\tInputs:\n");
 | |
|         for (auto o : inputs) {
 | |
|             MNN_PRINT("\tptr=%p, format=%s, datatype=%d;\t", o, EnumNameMNN_DATA_FORMAT(TensorUtils::getDescribe(o)->dimensionFormat), o->getType().code);
 | |
|             if (o->dimensions() == 0) {
 | |
|                 MNN_PRINT("\t*Scalar*");
 | |
|             }
 | |
|             for (int i = 0; i < o->dimensions(); ++i) {
 | |
|                 MNN_PRINT("%d, ", o->length(i));
 | |
|             }
 | |
|             MNN_PRINT("\n");
 | |
|         }
 | |
|     }
 | |
|     MNN_PRINT("\tOutputs:\n");
 | |
|     for (auto o : outputs) {
 | |
|         MNN_PRINT("\tptr=:%p, format=%s, datatype=%d;\t",o, EnumNameMNN_DATA_FORMAT(TensorUtils::getDescribe(o)->dimensionFormat), o->getType().code);
 | |
|         if (o->dimensions() == 0) {
 | |
|             MNN_PRINT("\t*Scalar*");
 | |
|         }
 | |
|         for (int i = 0; i < o->dimensions(); ++i) {
 | |
|             MNN_PRINT("%d, ", o->length(i));
 | |
|         }
 | |
|         MNN_PRINT("\n");
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| bool SizeComputer::computeOutputSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                      const std::vector<Tensor*>& outputs) {
 | |
|     auto computeFactory = SizeComputerSuite::get();
 | |
|     // When op is nullptr, it means a copy op
 | |
|     if (nullptr != op) {
 | |
|         // For Loop Op
 | |
|         if (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {
 | |
|             auto loop = op->main_as_LoopParam();
 | |
|             if (loop->extraTensorInfos() == nullptr) {
 | |
|                 return false;
 | |
|             }
 | |
|             MNN_ASSERT(loop->extraTensorInfos()->size() == outputs.size());
 | |
|             for (int i=0; i<outputs.size(); ++i) {
 | |
|                 auto des = loop->extraTensorInfos()->GetAs<TensorDescribe>(i);
 | |
|                 MNN_ASSERT(des->blob() != nullptr);
 | |
|                 auto blob = des->blob();
 | |
|                 TensorUtils::getDescribe(outputs[i])->dimensionFormat = blob->dataFormat();
 | |
|                 outputs[i]->setType(blob->dataType());
 | |
|                 if (blob->dims() != nullptr) {
 | |
|                     auto dims = blob->dims()->data();
 | |
|                     outputs[i]->buffer().dimensions = blob->dims()->size();
 | |
|                     for (int j=0; j<blob->dims()->size(); ++j) {
 | |
|                         outputs[i]->setLength(j, dims[j]);
 | |
|                     }
 | |
|                 } else {
 | |
|                     outputs[i]->buffer().dimensions = 0;
 | |
|                 }
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // Don't support compute shape for control flow op
 | |
|         if (op->type() == OpType_While || op->type() == OpType_If) {
 | |
|             return false;
 | |
|         }
 | |
|         // Check -1 input
 | |
|         for (auto& t : inputs) {
 | |
|             for (int i=0; i < t->dimensions(); ++i) {
 | |
|                 if (t->length(i) < 0) {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         auto computer = computeFactory->search(op->type());
 | |
|         if (nullptr != computer) {
 | |
|             bool ret = computer->onComputeSize(op, inputs, outputs);
 | |
| #ifdef MNN_DEBUG_TENSOR_SIZE
 | |
|             _printShape(op, inputs, outputs);
 | |
| #endif
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Default Set to the same
 | |
|     if (inputs.size() >= 1 && (outputs.size() == 1 || outputs.size() == inputs.size())) {
 | |
|         if (inputs[0] == outputs[0]) {
 | |
|             return true;
 | |
|         }
 | |
|         for (int i=0; i<outputs.size(); ++i) {
 | |
|             const auto& ib = inputs[i]->buffer();
 | |
|             auto& ob       = outputs[i]->buffer();
 | |
|             memcpy(ob.dim, ib.dim, sizeof(halide_dimension_t) * ib.dimensions);
 | |
|             ob.dimensions                                         = ib.dimensions;
 | |
|             ob.type                                               = ib.type;
 | |
|             TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[i])->dimensionFormat;
 | |
|         }
 | |
| #ifdef MNN_DEBUG_TENSOR_SIZE
 | |
|         _printShape(op, inputs, outputs);
 | |
| #endif
 | |
|         return true;
 | |
|     }
 | |
|     // Not Support
 | |
|     MNN_PRINT("Can't compute size for %d, name=%s\n", op->type(), op->name() ? op->name()->c_str() : "");
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| std::vector<int> SizeComputer::needInputContent(const MNN::Op* op, int inputSize) {
 | |
|     auto computeFactory = SizeComputerSuite::get();
 | |
|     // When op is nullptr, it means a copy op
 | |
|     if (nullptr != op) {
 | |
|         // when hasOutputShape = true, deconv last is outputShape
 | |
|         if (op->type() == OpType_Deconvolution && op->main_as_Convolution2D() && op->main_as_Convolution2D()->common()) {
 | |
|             if (op->main_as_Convolution2D()->common()->hasOutputShape()) {
 | |
|                 return std::vector<int>{ inputSize - 1 };
 | |
|             }
 | |
|         }
 | |
|         if (inputSize > 1 && (op->type() == OpType_Squeeze || op->type() == OpType_Unsqueeze)) {
 | |
|             return std::vector<int>{1};
 | |
|         }
 | |
|         if (op->type() == OpType_CumSum) {
 | |
|             return std::vector<int>{1};
 | |
|         }
 | |
|         auto computer = computeFactory->search(op->type());
 | |
|         if (nullptr != computer) {
 | |
|             return computer->mNeedContentInputIndex;
 | |
|         }
 | |
|     }
 | |
|     return std::vector<int>{};
 | |
| }
 | |
| bool SizeComputer::computeBroadCastDims(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) {
 | |
|     int maxDimensions = inputs[0]->dimensions();
 | |
|     int maxIndex = 0;
 | |
|     for (int index=1; index < inputs.size(); ++index) {
 | |
|         if (inputs[index]->dimensions() > maxDimensions) {
 | |
|             maxDimensions = inputs[index]->dimensions();
 | |
|             maxIndex = index;
 | |
|         }
 | |
|     }
 | |
|     int outputDims[MNN_MAX_TENSOR_DIM];
 | |
|     for (int i = 0; i < maxDimensions; i++) {
 | |
|         outputDims[i] = inputs[maxIndex]->length(i);
 | |
|     }
 | |
|     for (int index=0; index < inputs.size(); ++index) {
 | |
|         if (index == maxIndex) {
 | |
|             continue;
 | |
|         }
 | |
|         auto input1 = inputs[index];
 | |
|         auto input0 = inputs[maxIndex];
 | |
|         const int diffDimension = maxDimensions - input1->dimensions();
 | |
|         for (int i = diffDimension; i < maxDimensions; i++) {
 | |
|             const int input1Index = i - diffDimension;
 | |
|             int dim1 = input1->buffer().dim[input1Index].extent;
 | |
|             if (dim1 != outputDims[i] && (dim1 != 1 && outputDims[i] != 1)) {
 | |
|                 MNN_ERROR("Broad cast error, dim1 = %d, dim2 = %d\n", dim1, outputDims[i]);
 | |
|                 return false;
 | |
|             }
 | |
|             if (dim1 == outputDims[i]) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (dim1 != outputDims[i] && (dim1 == 1 || outputDims[i] == 1)) {
 | |
|                 outputDims[i] = outputDims[i] * dim1;
 | |
|             } else {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     auto& ob       = outputs[0]->buffer();
 | |
|     ob.dimensions = maxDimensions;
 | |
|     for (int i = 0; i < maxDimensions; i++) {
 | |
|         ob.dim[i].extent = outputDims[i];
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| } // namespace MNN
 |