MNN/source/shape/ShapeQuantizedMaxPool.cpp

69 lines
2.6 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// ShapeQuantizedMaxPool.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "Macro.h"
#include "SizeComputer.hpp"
namespace MNN {
class QuantizedMaxPoolComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer = op->main_as_QuantizedMaxPool();
MNN_ASSERT(layer->strideX() == layer->strideY());
int kernel_width = layer->kernelX();
int kernel_height = layer->kernelY();
int output_width = 1;
int output_height = 1;
auto input = inputs[0];
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
output_width = ceil((float)input->width() / (float)layer->strideX()); // NHWC for tensorflow
output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
} else {
MNN_ASSERT(false); // unsupported type
}
if (output_width <= 0 || output_height <= 0) {
return false;
}
// outputNHWC MNN: nchw
auto& outputBuffer = outputs[0]->buffer();
outputBuffer.dimensions = input->buffer().dimensions;
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
outputBuffer.dim[1].extent = output_height;
outputBuffer.dim[2].extent = output_width;
outputBuffer.dim[3].extent = input->buffer().dim[3].extent;
if (3 == inputs.size()) {
auto output_min = outputs[1]->buffer();
output_min.dimensions = 0;
output_min.dim[0].extent = output_min.dim[1].extent = output_min.dim[2].extent = output_min.dim[3].extent =
1;
auto output_max = outputs[2]->buffer();
output_max.dimensions = 0;
output_max.dim[0].extent = output_max.dim[1].extent = output_max.dim[2].extent = output_max.dim[3].extent =
1;
}
return true;
}
};
REGISTER_SHAPE(QuantizedMaxPoolComputer, OpType_QuantizedMaxPool);
} // namespace MNN