MNN/source/shape/ShapeQuantizedReshape.cpp

76 lines
2.4 KiB
C++

//
// ShapeQuantizedReshape.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Macro.h"
#include "SizeComputer.hpp"
namespace MNN {
class QuantizedReshapeComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer_param = op->main_as_QuantizedReshape();
auto input = inputs[0];
auto output = outputs[0];
const int32_t* dim_data = nullptr;
int32_t dimSize = 0;
bool istflite = (layer_param->modelFormat() == ModeFormat_TFLITE);
if (true == istflite) {
dimSize = layer_param->dims()->size();
dim_data = layer_param->dims()->data();
} else {
MNN_ASSERT(1 == inputs[1]->buffer().dimensions);
auto shape = inputs[1];
dimSize = shape->buffer().dim[0].extent;
dim_data = shape->host<int32_t>();
auto output_min = outputs[1]->buffer();
auto output_max = outputs[2]->buffer();
output_min.dim[0].extent = output_min.dim[1].extent = output_min.dim[2].extent = output_min.dim[3].extent =
1;
output_min.dimensions = 0;
output_max.dim[0].extent = output_max.dim[1].extent = output_max.dim[2].extent = output_max.dim[3].extent =
1;
output_max.dimensions = 0;
}
int num_element = 1;
for (int i = 0; i < input->buffer().dimensions; i++) {
num_element *= input->buffer().dim[i].extent;
}
output->buffer().dimensions = dimSize;
int count_non_minus1 = 1;
for (int i = 0; i < dimSize; i++) {
if (dim_data[i] != -1) {
count_non_minus1 *= dim_data[i];
}
}
MNN_ASSERT((num_element % count_non_minus1) == 0)
for (int i = 0; i < dimSize; i++) {
int shape_dim = dim_data[i];
if (shape_dim == -1) {
shape_dim = num_element / count_non_minus1;
}
output->buffer().dim[i].extent = shape_dim;
}
output->setType(DataType_DT_UINT8);
return true;
}
};
REGISTER_SHAPE(QuantizedReshapeComputer, OpType_QuantizedReshape);
} // namespace MNN