mirror of https://github.com/alibaba/MNN.git
42 lines
1.7 KiB
C++
42 lines
1.7 KiB
C++
//
|
||
// ShapeResize.cpp
|
||
// MNN
|
||
//
|
||
// Created by MNN on 2019/01/10.
|
||
// Copyright © 2018, Alibaba Group Holding Limited
|
||
//
|
||
|
||
#include "Macro.h"
|
||
#include "SizeComputer.hpp"
|
||
|
||
namespace MNN {
|
||
// –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
|
||
// Size Computer
|
||
// –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
|
||
class ResizeComputer : public SizeComputer {
|
||
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
|
||
const std::vector<Tensor *> &outputs) const override {
|
||
MNN_ASSERT(1 == inputs.size());
|
||
MNN_ASSERT(1 == outputs.size());
|
||
|
||
// copy dims
|
||
auto resize = op->main_as_Resize();
|
||
auto &input = inputs[0]->buffer();
|
||
auto &output = outputs[0]->buffer();
|
||
::memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
|
||
|
||
// set dims
|
||
output.dim[3].extent = input.dim[3].extent * resize->xScale();
|
||
output.dim[2].extent = input.dim[2].extent * resize->yScale();
|
||
|
||
return true;
|
||
}
|
||
virtual float onComputeFlops(const MNN::Op *op, const std::vector<Tensor *> &inputs,
|
||
const std::vector<Tensor *> &outputs) const override {
|
||
return (float)outputs[0]->elementSize() / 1024.0f / 1024.0f * 4;
|
||
}
|
||
};
|
||
|
||
REGISTER_SHAPE(ResizeComputer, OpType_Resize);
|
||
} // namespace MNN
|