mirror of https://github.com/alibaba/MNN.git
74 lines
2.9 KiB
C++
74 lines
2.9 KiB
C++
//
|
||
// ShapeTFQuantizedConv2D.cpp
|
||
// MNN
|
||
//
|
||
// Created by MNN on 2019/01/10.
|
||
// Copyright © 2018, Alibaba Group Holding Limited
|
||
//
|
||
|
||
#include <math.h>
|
||
#include "Macro.h"
|
||
#include "SizeComputer.hpp"
|
||
|
||
namespace MNN {
|
||
class TFQuantizedConv2DComputer : public SizeComputer {
|
||
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
||
const std::vector<Tensor*>& outputs) const override {
|
||
auto layer = op->main_as_TfQuantizedConv2D()->common();
|
||
|
||
MNN_ASSERT(layer->dilateX() == 1);
|
||
MNN_ASSERT(layer->dilateY() == 1);
|
||
MNN_ASSERT(layer->strideX() == layer->strideY());
|
||
|
||
int kernel_width = layer->dilateX() * (layer->kernelX() - 1) + 1;
|
||
int kernel_height = layer->dilateY() * (layer->kernelY() - 1) + 1;
|
||
|
||
int output_width = 1;
|
||
int output_height = 1;
|
||
|
||
auto input = inputs[0];
|
||
|
||
if (layer->padMode() == PadMode_SAME) { // Tensorflow padding mode SAME
|
||
output_width = ceil((float)input->width() / (float)layer->strideX()); // NHWC for tensorflow
|
||
output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
|
||
} else if (layer->padMode() == PadMode_VALID) { // Tensorflow padding mode VALID
|
||
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
|
||
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
|
||
} else {
|
||
MNN_ASSERT(false); // unsupported type
|
||
}
|
||
|
||
// output:NCHW
|
||
auto& outputBuffer = outputs[0]->buffer();
|
||
outputBuffer.dimensions = input->buffer().dimensions;
|
||
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
|
||
outputBuffer.dim[1].extent = layer->outputCount();
|
||
outputBuffer.dim[2].extent = output_height;
|
||
outputBuffer.dim[3].extent = output_width;
|
||
|
||
outputs[0]->buffer().type = halide_type_of<uint8_t>();
|
||
|
||
return true;
|
||
}
|
||
|
||
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
||
const std::vector<Tensor*>& outputs) const override {
|
||
auto layer = op->main_as_TfQuantizedConv2D()->common();
|
||
auto kw = layer->kernelX();
|
||
auto kh = layer->kernelY();
|
||
int group = 1;
|
||
if (op->type() == OpType_QuantizedDepthwiseConv2D) {
|
||
group = inputs[0]->channel();
|
||
}
|
||
auto ic = inputs[0]->channel();
|
||
auto oc = outputs[0]->channel();
|
||
auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
|
||
|
||
return (float)oSize * kw * kh * (ic * oc / group) / FLOPS_M;
|
||
}
|
||
};
|
||
|
||
REGISTER_SHAPE(TFQuantizedConv2DComputer, OpType_TfQuantizedConv2D);
|
||
REGISTER_SHAPE(TFQuantizedConv2DComputer, OpType_QuantizedDepthwiseConv2D);
|
||
} // namespace MNN
|