mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			57 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeTranspose.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "Macro.h"
 | |
| #include "SizeComputer.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| class TransposeComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         auto OpParam        = op->main_as_Transpose();
 | |
|         const Tensor* input = inputs[0];
 | |
|         Tensor* perm        = inputs[1];
 | |
|         std::shared_ptr<Tensor> perTemp;
 | |
| 
 | |
|         // copy data from device to host if needed
 | |
|         if (!perm->host<int32_t>() && perm->deviceId()) {
 | |
|             perTemp.reset(Tensor::createHostTensorFromDevice(perm, true));
 | |
|             perm = perTemp.get();
 | |
|         }
 | |
| 
 | |
|         const int dims = input->buffer().dimensions;
 | |
|         MNN_ASSERT(dims == perm->buffer().dim[0].extent);
 | |
| 
 | |
|         std::vector<int32_t> permutation;
 | |
|         if (OpParam->Tperm() == DataType_DT_INT32) {
 | |
|             for (int i = 0; i < perm->buffer().dim[0].extent; i++) {
 | |
|                 permutation.push_back(perm->host<int32_t>()[i]);
 | |
|             }
 | |
|         } else if (OpParam->Tperm() == DataType_DT_INT64) {
 | |
|             for (int i = 0; i < perm->buffer().dim[0].extent; i++) {
 | |
|                 permutation.push_back(static_cast<int32_t>(perm->host<int64_t>()[i]));
 | |
|             }
 | |
|         } else {
 | |
|             MNN_ASSERT(false);
 | |
|         }
 | |
| 
 | |
|         outputs[0]->buffer().dimensions = dims;
 | |
| 
 | |
|         for (int i = 0; i < dims; ++i) {
 | |
|             const int32_t d                    = permutation[i];
 | |
|             outputs[0]->buffer().dim[i].extent = input->buffer().dim[d].extent;
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(TransposeComputer, OpType_Transpose);
 | |
| } // namespace MNN
 |