OSWorld/lib_run_single.py

646 lines
26 KiB
Python

import datetime
import json
import logging
import os
import time
from wrapt_timeout_decorator import *
from lib_results_logger import log_task_completion
logger = logging.getLogger("desktopenv.experiment")
def run_single_example(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
# Reset environment first to get fresh VM IP
env.reset(task_config=example)
# Reset agent with fresh VM IP (for snapshot reverts)
try:
agent.reset(runtime_logger, vm_ip=env.vm_ip)
except Exception as e:
agent.reset(vm_ip=env.vm_ip)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs
)
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S%f")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
_f.write(obs['screenshot'])
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"response": response,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
time.sleep(20) # Wait for the environment to settle
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
# Log task completion to results.json
log_task_completion(example, result, example_result_dir, args)
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
def setup_logger(example, example_result_dir):
runtime_logger = logging.getLogger(f"desktopenv.example.{example['id']}")
runtime_logger.setLevel(logging.DEBUG)
runtime_logger.addHandler(logging.FileHandler(os.path.join(example_result_dir, "runtime.log")))
return runtime_logger
def run_single_example_human(env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
env.reset(task_config=example)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
# Save initial screenshot
with open(os.path.join(example_result_dir, "initial_state.png"), "wb") as _f:
_f.write(obs['screenshot'])
# Save trajectory information
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"instruction": instruction,
"initial_state": "initial_state.png"
}))
f.write("\n")
# Evaluate the result
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
def run_single_example_agi(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
agent.reset(runtime_logger)
env.reset(task_config=example)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs
)
done = not response.get('state_correct', False)
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info, step_info = agent.step(action)
if not done:
if not response.get('state_correct', False):
done = True
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
_f.write(obs['screenshot'])
# Remove pending checks if they exist which will cause issues with json serialization
if action.get('pending_checks', None):
del action['pending_checks']
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
def run_single_example_openaicua(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
agent.reset(runtime_logger)
env.reset(task_config=example)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs
)
done = not response.get('state_correct', False)
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info, step_info = agent.step(action)
if not done:
if not response.get('state_correct', False):
done = True
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
_f.write(obs['screenshot'])
# Remove pending checks if they exist which will cause issues with json serialization
if action.get('pending_checks', None):
del action['pending_checks']
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
def run_single_example_opencua(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
agent.reset(runtime_logger)
env.reset(task_config=example)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
response, actions, info_dict = agent.predict(instruction, obs)
logger.info(f"Got Action: {actions}")
# Breack if no actions
if not actions or len(actions)==0 or actions[0]=="" or actions[0].lower().startswith("error"):
break
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info(f"Action {action} executed, reward: {reward}, done: {done}")
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
_f.write(obs['screenshot'])
with open(os.path.join(example_result_dir, "traj.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action": action,
"natural_language_action": info_dict.get("action"),
"action_timestamp": action_timestamp,
"response": response,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}, ensure_ascii=False))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
time.sleep(20) # Wait for the environment to settle
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
def run_single_example_autoglm(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
try:
agent.reset(runtime_logger)
except Exception as e:
agent.reset()
env.reset(task_config=example)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs
)
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
_f.write(obs['screenshot'])
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"response": response,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
# Invalid Action
if not actions:
obs = env._get_obs() # update observation
step_idx += 1
if not done: # not completed the task yet
env.action_history.append('FAIL')
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
def run_single_example_mano(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
agent.reset(runtime_logger)
env.reset(task_config=example)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
with open(os.path.join(example_result_dir, f"step_0.png"),
"wb") as _f:
_f.write(obs['screenshot'])
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs
)
if len(actions) > 1:
if (("pyautogui.hotkey('shift')" in actions[0] or "pyautogui.hotkey('ctrl')" in actions[0])
and "pyautogui.click" in actions[1]):
hotkey_type = 'shift' if "shift" in actions[0] else 'ctrl'
action = f"pyautogui.keyDown('{hotkey_type}')\n{actions[1]}\npyautogui.keyUp('{hotkey_type}')"
actions = [action]
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
_f.write(obs['screenshot'])
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png",
"response":response
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
def run_single_example_uipath(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
runtime_logger = setup_logger(example, example_result_dir)
try:
agent.reset(runtime_logger)
except Exception as e:
agent.reset()
env.reset(task_config=example)
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs,
args,
step_idx
)
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
_f.write(obs['screenshot'])
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"response": response,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
from mm_agents.os_symphony.utils.common_utils import draw_coordinates
from mm_agents.os_symphony.utils.process_context import set_current_result_dir
logger = logging.getLogger("desktopenv.experiment")
def run_single_example_os_symphony(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
set_current_result_dir(example_result_dir)
agent.reset(result_dir=example_result_dir)
env.reset(task_config=example)
time.sleep(30) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
# env.controller.start_recording()
start_time = time.time()
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs,
step_idx == max_steps - 1
)
for action in actions:
# Save screenshot and trajectory information
if "reflection" in response and response["reflection"].get("is_milestone"):
img_name = f"step_{step_idx + 1}_milestone.png"
else:
img_name = f"step_{step_idx + 1}.png"
with open(os.path.join(example_result_dir, img_name),
"wb") as _f:
_f.write(obs['screenshot'])
if "coordinates" in response and response["coordinates"]:
draw_coordinates(
image_bytes=obs['screenshot'],
coordinates=response["coordinates"],
save_path=os.path.join(example_result_dir, img_name[:-4] + "_draw.png")
)
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Done: %s", done)
with open(os.path.join(example_result_dir, "traj.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps({
"instruction": instruction,
"step_num": step_idx + 1,
"action": action,
"response": response,
"done": done,
"info": info,
"screenshot_file": img_name
}))
f.write("\n")
with open(os.path.join(example_result_dir, f"traj_{step_idx+1}.json"), "w", encoding="utf-8") as f:
json.dump({
"step_num": step_idx + 1,
"action": action,
"response": response,
"done": done,
"info": info,
"screenshot_file": img_name
}, f, indent=4, ensure_ascii=False)
if done:
logger.info("The episode is done.")
time.sleep(60)
break
step_idx += 1
end_time = time.time()
result = float(env.evaluate())
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
with open(os.path.join(example_result_dir, "time.txt"), "w", encoding="utf-8") as f:
f.write(f"{end_time-start_time:.2f}\n")
def run_single_example_evocua(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
"""
Unified run function for EvoCUAAgent (supporting both S1 and S2 modes).
"""
runtime_logger = setup_logger(example, example_result_dir)
# Reset Environment
env.reset(task_config=example)
# Reset Agent
# Handle agent reset signature differences if any
try:
agent.reset(runtime_logger, vm_ip=env.vm_ip)
except Exception:
try:
agent.reset(runtime_logger)
except Exception:
agent.reset()
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
# EvoCUAAgent.predict unified signature: returns (response, actions)
# It handles both modes internally.
predict_res = agent.predict(instruction, obs)
# Check return signature logic
if len(predict_res) == 3:
# Compatibility with S1 original signature if agent was updated to match
response, actions, info_dict = predict_res
else:
response, actions = predict_res
info_dict = {}
logger.info(f"Step {step_idx + 1} Actions: {actions}")
# Break if no actions (fail-safe)
if not actions or (len(actions) == 1 and (actions[0] == "" or "error" in actions[0].lower())):
# Allow "FAIL" or "DONE" to process through execution loop if agent outputs them as actions
if not (actions and actions[0] in ["FAIL", "DONE"]):
logger.warning("No valid actions returned. Breaking loop.")
break
for action in actions:
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S%f")
logger.info("Executing action: %s", action)
# Execute
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot
screenshot_file = f"step_{step_idx + 1}_{action_timestamp}.png"
with open(os.path.join(example_result_dir, screenshot_file), "wb") as _f:
_f.write(obs['screenshot'])
# Log Trajectory
log_entry = {
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"response": response,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": screenshot_file
}
# Add natural language info if available (S1 style)
if info_dict:
log_entry["natural_language_action"] = info_dict.get("action")
with open(os.path.join(example_result_dir, "traj.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps(log_entry, ensure_ascii=False))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
time.sleep(20) # Wait for environment to settle
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
log_task_completion(example, result, example_result_dir, args)
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))