SLA-RedM/reference-deepwiki/deepwiki-open-main/api/bedrock_client.py

318 lines
12 KiB
Python

"""AWS Bedrock ModelClient integration."""
import os
import json
import logging
import boto3
import botocore
import backoff
from typing import Dict, Any, Optional, List, Generator, Union, AsyncGenerator
from adalflow.core.model_client import ModelClient
from adalflow.core.types import ModelType, GeneratorOutput
# Configure logging
from api.logging_config import setup_logging
setup_logging()
log = logging.getLogger(__name__)
class BedrockClient(ModelClient):
__doc__ = r"""A component wrapper for the AWS Bedrock API client.
AWS Bedrock provides a unified API that gives access to various foundation models
including Amazon's own models and third-party models like Anthropic Claude.
Example:
```python
from api.bedrock_client import BedrockClient
client = BedrockClient()
generator = adal.Generator(
model_client=client,
model_kwargs={"model": "anthropic.claude-3-sonnet-20240229-v1:0"}
)
```
"""
def __init__(
self,
aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,
aws_region: Optional[str] = None,
aws_role_arn: Optional[str] = None,
*args,
**kwargs
) -> None:
"""Initialize the AWS Bedrock client.
Args:
aws_access_key_id: AWS access key ID. If not provided, will use environment variable AWS_ACCESS_KEY_ID.
aws_secret_access_key: AWS secret access key. If not provided, will use environment variable AWS_SECRET_ACCESS_KEY.
aws_region: AWS region. If not provided, will use environment variable AWS_REGION.
aws_role_arn: AWS IAM role ARN for role-based authentication. If not provided, will use environment variable AWS_ROLE_ARN.
"""
super().__init__(*args, **kwargs)
from api.config import AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION, AWS_ROLE_ARN
self.aws_access_key_id = aws_access_key_id or AWS_ACCESS_KEY_ID
self.aws_secret_access_key = aws_secret_access_key or AWS_SECRET_ACCESS_KEY
self.aws_region = aws_region or AWS_REGION or "us-east-1"
self.aws_role_arn = aws_role_arn or AWS_ROLE_ARN
self.sync_client = self.init_sync_client()
self.async_client = None # Initialize async client only when needed
def init_sync_client(self):
"""Initialize the synchronous AWS Bedrock client."""
try:
# Create a session with the provided credentials
session = boto3.Session(
aws_access_key_id=self.aws_access_key_id,
aws_secret_access_key=self.aws_secret_access_key,
region_name=self.aws_region
)
# If a role ARN is provided, assume that role
if self.aws_role_arn:
sts_client = session.client('sts')
assumed_role = sts_client.assume_role(
RoleArn=self.aws_role_arn,
RoleSessionName="DeepWikiBedrockSession"
)
credentials = assumed_role['Credentials']
# Create a new session with the assumed role credentials
session = boto3.Session(
aws_access_key_id=credentials['AccessKeyId'],
aws_secret_access_key=credentials['SecretAccessKey'],
aws_session_token=credentials['SessionToken'],
region_name=self.aws_region
)
# Create the Bedrock client
bedrock_runtime = session.client(
service_name='bedrock-runtime',
region_name=self.aws_region
)
return bedrock_runtime
except Exception as e:
log.error(f"Error initializing AWS Bedrock client: {str(e)}")
# Return None to indicate initialization failure
return None
def init_async_client(self):
"""Initialize the asynchronous AWS Bedrock client.
Note: boto3 doesn't have native async support, so we'll use the sync client
in async methods and handle async behavior at a higher level.
"""
# For now, just return the sync client
return self.sync_client
def _get_model_provider(self, model_id: str) -> str:
"""Extract the provider from the model ID.
Args:
model_id: The model ID, e.g., "anthropic.claude-3-sonnet-20240229-v1:0"
Returns:
The provider name, e.g., "anthropic"
"""
if "." in model_id:
return model_id.split(".")[0]
return "amazon" # Default provider
def _format_prompt_for_provider(self, provider: str, prompt: str, messages=None) -> Dict[str, Any]:
"""Format the prompt according to the provider's requirements.
Args:
provider: The provider name, e.g., "anthropic"
prompt: The prompt text
messages: Optional list of messages for chat models
Returns:
A dictionary with the formatted prompt
"""
if provider == "anthropic":
# Format for Claude models
if messages:
# Format as a conversation
formatted_messages = []
for msg in messages:
role = "user" if msg.get("role") == "user" else "assistant"
formatted_messages.append({
"role": role,
"content": [{"type": "text", "text": msg.get("content", "")}]
})
return {
"anthropic_version": "bedrock-2023-05-31",
"messages": formatted_messages,
"max_tokens": 4096
}
else:
# Format as a single prompt
return {
"anthropic_version": "bedrock-2023-05-31",
"messages": [
{"role": "user", "content": [{"type": "text", "text": prompt}]}
],
"max_tokens": 4096
}
elif provider == "amazon":
# Format for Amazon Titan models
return {
"inputText": prompt,
"textGenerationConfig": {
"maxTokenCount": 4096,
"stopSequences": [],
"temperature": 0.7,
"topP": 0.8
}
}
elif provider == "cohere":
# Format for Cohere models
return {
"prompt": prompt,
"max_tokens": 4096,
"temperature": 0.7,
"p": 0.8
}
elif provider == "ai21":
# Format for AI21 models
return {
"prompt": prompt,
"maxTokens": 4096,
"temperature": 0.7,
"topP": 0.8
}
else:
# Default format
return {"prompt": prompt}
def _extract_response_text(self, provider: str, response: Dict[str, Any]) -> str:
"""Extract the generated text from the response.
Args:
provider: The provider name, e.g., "anthropic"
response: The response from the Bedrock API
Returns:
The generated text
"""
if provider == "anthropic":
return response.get("content", [{}])[0].get("text", "")
elif provider == "amazon":
return response.get("results", [{}])[0].get("outputText", "")
elif provider == "cohere":
return response.get("generations", [{}])[0].get("text", "")
elif provider == "ai21":
return response.get("completions", [{}])[0].get("data", {}).get("text", "")
else:
# Try to extract text from the response
if isinstance(response, dict):
for key in ["text", "content", "output", "completion"]:
if key in response:
return response[key]
return str(response)
@backoff.on_exception(
backoff.expo,
(botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError),
max_time=5,
)
def call(self, api_kwargs: Dict = None, model_type: ModelType = None) -> Any:
"""Make a synchronous call to the AWS Bedrock API."""
api_kwargs = api_kwargs or {}
# Check if client is initialized
if not self.sync_client:
error_msg = "AWS Bedrock client not initialized. Check your AWS credentials and region."
log.error(error_msg)
return error_msg
if model_type == ModelType.LLM:
model_id = api_kwargs.get("model", "anthropic.claude-3-sonnet-20240229-v1:0")
provider = self._get_model_provider(model_id)
# Get the prompt from api_kwargs
prompt = api_kwargs.get("input", "")
messages = api_kwargs.get("messages")
# Format the prompt according to the provider
request_body = self._format_prompt_for_provider(provider, prompt, messages)
# Add model parameters if provided
if "temperature" in api_kwargs:
if provider == "anthropic":
request_body["temperature"] = api_kwargs["temperature"]
elif provider == "amazon":
request_body["textGenerationConfig"]["temperature"] = api_kwargs["temperature"]
elif provider == "cohere":
request_body["temperature"] = api_kwargs["temperature"]
elif provider == "ai21":
request_body["temperature"] = api_kwargs["temperature"]
if "top_p" in api_kwargs:
if provider == "anthropic":
request_body["top_p"] = api_kwargs["top_p"]
elif provider == "amazon":
request_body["textGenerationConfig"]["topP"] = api_kwargs["top_p"]
elif provider == "cohere":
request_body["p"] = api_kwargs["top_p"]
elif provider == "ai21":
request_body["topP"] = api_kwargs["top_p"]
# Convert request body to JSON
body = json.dumps(request_body)
try:
# Make the API call
response = self.sync_client.invoke_model(
modelId=model_id,
body=body
)
# Parse the response
response_body = json.loads(response["body"].read())
# Extract the generated text
generated_text = self._extract_response_text(provider, response_body)
return generated_text
except Exception as e:
log.error(f"Error calling AWS Bedrock API: {str(e)}")
return f"Error: {str(e)}"
else:
raise ValueError(f"Model type {model_type} is not supported by AWS Bedrock client")
async def acall(self, api_kwargs: Dict = None, model_type: ModelType = None) -> Any:
"""Make an asynchronous call to the AWS Bedrock API."""
# For now, just call the sync method
# In a real implementation, you would use an async library or run the sync method in a thread pool
return self.call(api_kwargs, model_type)
def convert_inputs_to_api_kwargs(
self, input: Any = None, model_kwargs: Dict = None, model_type: ModelType = None
) -> Dict:
"""Convert inputs to API kwargs for AWS Bedrock."""
model_kwargs = model_kwargs or {}
api_kwargs = {}
if model_type == ModelType.LLM:
api_kwargs["model"] = model_kwargs.get("model", "anthropic.claude-3-sonnet-20240229-v1:0")
api_kwargs["input"] = input
# Add model parameters
if "temperature" in model_kwargs:
api_kwargs["temperature"] = model_kwargs["temperature"]
if "top_p" in model_kwargs:
api_kwargs["top_p"] = model_kwargs["top_p"]
return api_kwargs
else:
raise ValueError(f"Model type {model_type} is not supported by AWS Bedrock client")