Revise implementation of isometric 'Snap To'

This commit is contained in:
Liebranca 2025-02-19 17:50:50 -03:00
parent 2322cd02ee
commit f612e48966
6 changed files with 139 additions and 105 deletions

View File

@ -140,9 +140,8 @@ void GridSettingsCommand::onExecute(Context* context)
bounds.h = std::max(bounds.h, 1);
typestr = window.gridType()->getEntryWidget()->text();
type = (typestr == app::Strings::grid_settings_type_isometric() ?
doc::Grid::Type::Isometric :
doc::Grid::Type::Orthogonal);
type = (typestr == app::Strings::grid_settings_type_isometric() ? doc::Grid::Type::Isometric :
doc::Grid::Type::Orthogonal);
ContextWriter writer(context);
Tx tx(writer, friendlyName(), ModifyDocument);

View File

@ -29,38 +29,15 @@ gfx::Point snap_to_isometric_grid(const gfx::Rect& grid,
{
// Because we force unworkable grid sizes to share a pixel,
// we need to account for that here
auto guide = doc::Grid(grid).getIsometricLinePoints();
const int width = guide[2].x;
int height = guide[2].y;
if (ABS(grid.w - grid.h) > 1) {
const bool x_share = (guide[1].x & 1) != 0 && (grid.w & 1) == 0;
const bool y_share = ((guide[0].y & 1) == 0 || (grid.w & 1) == 0) && (grid.h & 1) != 0;
const bool y_undiv = ((grid.h / 2) & 1) != 0;
const bool y_uneven = (grid.w & 1) != 0 && (grid.h & 1) == 0;
const bool y_skip = !x_share && !y_undiv && !y_uneven && (grid.w & 1) != 0 && (grid.h & 1) != 0;
if (x_share) {
guide[1].x++;
}
if (y_share && !y_skip) {
guide[0].y--;
}
else {
if (y_undiv) {
height++;
}
if (y_uneven) {
guide[0].y++;
guide[1].x += int((grid.w & 1) == 0);
}
}
}
auto guide = doc::Grid::IsometricGuide(grid.size());
const int width = grid.w - int(!guide.evenWidth);
const int height = grid.h - int(!guide.evenHeight);
// Convert point to grid space
const gfx::PointF newPoint(int((point.x - grid.x) / double(grid.w)) * grid.w,
int((point.y - grid.y) / double(grid.h)) * grid.h);
const gfx::PointF newPoint(int((point.x - grid.x) / width) * width,
int((point.y - grid.y) / height) * height);
// And then make it relative to the center of a cell
const gfx::PointF vto((newPoint + gfx::Point(guide[1].x, guide[0].y)) - point);
const gfx::PointF vto((newPoint + gfx::Point(guide.end.x, guide.start.y)) - point);
// The following happens here:
//
@ -81,9 +58,9 @@ gfx::Point snap_to_isometric_grid(const gfx::Rect& grid,
if (prefer != PreferSnapTo::ClosestGridVertex) {
// We use the pixel-precise grid for this bounds-check
const auto& line = doc::Grid(grid).getIsometricLine();
const auto line = doc::Grid::getIsometricLine(grid.size());
const int index = int(ABS(vto.y) - int(vto.y > 0)) + 1;
const gfx::Point co(-vto.x + guide[1].x, -vto.y + guide[0].y);
const gfx::Point co(-vto.x + guide.end.x, -vto.y + guide.start.y);
const gfx::Point& p = line[index];
outside = !(p.x <= co.x) || !(co.x < width - p.x) || !(height - p.y <= co.y) || !(co.y < p.y);
}
@ -91,10 +68,14 @@ gfx::Point snap_to_isometric_grid(const gfx::Rect& grid,
// Find which of the four corners of the current diamond
// should be picked
gfx::Point near(0, 0);
const gfx::Point candidates[] = { gfx::Point(guide[1].x, 0),
gfx::Point(guide[1].x, height),
gfx::Point(0, guide[0].y),
gfx::Point(width, guide[0].y) };
const int offsetEvenX = (!guide.squareRatio ? int(guide.evenWidth) : 0);
const int offsetOddY = (!guide.squareRatio ? int(!guide.shareEdges || !guide.evenHeight) :
int(!guide.evenHeight));
const int offsetOddX = (!guide.squareRatio ? int(guide.oddSize) : 0);
const gfx::Point candidates[] = { gfx::Point(guide.end.x + offsetEvenX, 0),
gfx::Point(guide.end.x + offsetEvenX, height),
gfx::Point(offsetOddX, guide.start.y - offsetOddY),
gfx::Point(width + offsetOddX, guide.start.y - offsetOddY) };
switch (prefer) {
case PreferSnapTo::ClosestGridVertex:
if (ABS(vto.x) > ABS(vto.y))

View File

@ -36,50 +36,70 @@ static void snap_isometric_line(ToolLoop* loop, Stroke& stroke, bool lineCtl)
double len = ABS(vto.x) + ABS(vto.y);
vto /= len;
// Offset vertical lines/single point one pixel left for line tool.
const gfx::Rect& grid = loop->getGridBounds();
const auto line = doc::Grid::IsometricGuide(grid.size());
// Offset vertical lines/single point to the left for line tool.
// Because pressing the angle snap key will bypass this function,
// this makes it so one can selectively apply the offset.
if ((std::isnan(vto.x) && std::isnan(vto.y)) || (int(vto.x) == 0 && int(vto.y) != 0)) {
a.x -= lineTool;
b.x -= lineTool;
const int step = 1 + (line.oddSize * int(!line.squareRatio));
a.x -= step * int(lineTool);
b.x -= step * int(lineTool);
}
// Horizontal lines
else if (int(vto.y) == 0 && int(vto.x) != 0) {
if (vto.x > 0)
b.x--;
else
a.x--;
}
// Diagonal lines
else {
// Skip horizontal or cross-cell diagonal lines
const auto& line = loop->getGrid().getIsometricLinePoints();
PointF normal(line[1].x, line[0].y);
normal /= ABS(normal.x) + ABS(normal.y);
const double eps = 0.05;
if (ABS(vto.x) < normal.x - eps || ABS(vto.x) > normal.x + eps || ABS(vto.y) < normal.y - eps ||
ABS(vto.y) > normal.y + eps)
return;
// Adjust start/end point based on line direction and grid size
const gfx::Rect& grid = loop->getGridBounds();
const bool x_even = (grid.w & 1) == 0 && ((grid.w / 2) & 1) == 0;
const bool y_even = (grid.h & 1) == 0 && ((grid.h / 2) & 1) == 0;
const bool stretch = (line[1].x & 1) != 0 && (grid.w & 1) == 0;
const bool square = ABS(grid.w - grid.h) <= 1;
if (!line.squareRatio) {
if (vto.x < 0) {
a.x -= line.evenWidth;
b.x -= 2 * line.oddSize;
}
else {
a.x -= 2 * line.oddSize;
b.x -= line.evenWidth;
}
if (vto.x < 0) {
if (square && x_even && y_even)
b.y -= SGN(vto.y);
// Unticking 'share borders' adds one pixel of distance between edges
if (!line.shareEdges) {
if (vto.y < 0)
a.y--;
else
b.y--;
}
a.x -= ((y_even || stretch) ? 1 : -1) * int(x_even);
b.x += 1 * int(x_even && !y_even && !stretch);
// Some line angles do not intertwine in the exact same way
// when the order of the two points is inverted, so we try to
// detect this edge case and flip the points.
//
// TODO: this fix only works for two-point lines. Support
// for freehand strokes would require changes to intertwiners,
// not just the freehand controller itself.
if (lineTool && vto.x < 0 && a.x % (grid.w - !line.evenWidth)) {
auto tmp = a;
a = b;
b = tmp;
}
}
else {
if (square && x_even && y_even) {
b.x--;
b.y -= SGN(vto.y);
if (vto.x < 0) {
a.x -= line.evenWidth;
b.y -= SGN(vto.y) * line.evenHeight;
}
b.x -= int(int(y_even) * int(x_even) == 0);
}
if (vto.y < 0) {
if (square && x_even && y_even) {
a.y--;
b.y--;
else {
b.x -= line.evenWidth;
b.y -= SGN(vto.y) * line.evenHeight;
}
if (vto.y < 0) {
a.y -= line.evenHeight;
b.y -= line.evenHeight;
}
}
}

View File

@ -1176,9 +1176,11 @@ void Editor::drawGrid(Graphics* g,
int dx = std::round(grid.w * pix.w);
int dy = std::round(grid.h * pix.h);
auto guide = doc::Grid::IsometricGuide(grid.size());
// Diamonds share a side when their size is uneven
dx -= pix.w * (grid.w & 1);
dy -= pix.h * (grid.h & 1);
dx -= pix.w * int(!guide.evenWidth);
dy -= pix.h * int(!guide.evenHeight);
if (dx < 2)
dx = 2;
@ -1218,7 +1220,7 @@ void Editor::drawGrid(Graphics* g,
// Get length and direction of line (a, b)
Point vto = Point(b - a);
Point ivto = Point(-vto.x, vto.y);
PointF ivto = PointF(-vto.x, vto.y);
const double lenF = sqrt(vto.x * vto.x + vto.y * vto.y);
// Now displace point (b) to right edge of canvas
@ -1236,9 +1238,7 @@ void Editor::drawGrid(Graphics* g,
// Calculate how much we need to stretch
// line (a, b) to cover the whole canvas
const double len = std::round(left.x / lenF) + std::round(dx / lenF) + 1 * int(grid.x > 0) +
1 * int(grid.y > 0) + 2;
const double len = (x2 - x1) + (y2 - y1);
vto.x = std::round(vto.x * len);
vto.y = std::round(vto.y * len);
ivto.x = std::round(ivto.x * len);
@ -1281,7 +1281,7 @@ gfx::Path& Editor::getIsometricGridPath(Rect& grid)
// Prepare bitmap from points of pixel precise line.
// A single grid cell is calculated from these
im->clear(0x00);
for (const auto& p : getSite().grid().getIsometricLine())
for (const auto p : doc::Grid::getIsometricLine(grid.size()))
im->fillRect(std::round(p.x * pix.w),
std::round((grid.h - p.y) * pix.h),
std::floor((grid.w - p.x) * pix.w),

View File

@ -179,43 +179,56 @@ std::vector<gfx::Point> Grid::tilesInCanvasRegion(const gfx::Region& rgn) const
return result;
}
Grid::IsometricGuide::IsometricGuide(const gfx::Size& sz)
{
evenWidth = sz.w % 2 == 0;
evenHeight = sz.h % 2 == 0;
evenHalfWidth = ((sz.w / 2) % 2) == 0;
evenHalfHeight = ((sz.h / 2) % 2) == 0;
squareRatio = ABS(sz.w - sz.h) <= 1;
oddSize = !evenWidth && evenHalfWidth && !evenHeight && evenHalfHeight;
// TODO: add 'share edges' checkbox to UI.
// For testing the option, set this 'false' to 'true'
shareEdges = !(false && !squareRatio && evenHeight);
start.x = 0;
start.y = std::round(sz.h * 0.5);
end.x = sz.w / 2;
end.y = sz.h;
if (!squareRatio) {
if (evenWidth) {
end.x--;
}
else if (oddSize) {
start.x--;
end.x++;
}
}
if (!shareEdges) {
start.y++;
}
}
static void push_isometric_line_point(int x, int y, std::vector<gfx::Point>* data)
{
if (data->empty() || data->back().y != y) {
data->push_back(gfx::Point(x, y));
data->push_back(gfx::Point(x * int(x >= 0), y));
}
};
std::array<gfx::Point, 3> Grid::getIsometricLinePoints() const
{
int x = 0;
int y = std::round(m_tileSize.h * 0.5);
int dx = m_tileSize.w / 2;
const int dy = m_tileSize.h;
const bool x_uneven = (m_tileSize.w & 1) != 0 || (dx & 1) != 0;
const bool y_uneven = (m_tileSize.h & 1) != 0 || (y & 1) != 0;
dx -= int(x_uneven ^ y_uneven);
y -= m_tileSize.w & 1;
x -= m_tileSize.w & 1;
return { gfx::Point(x, y),
gfx::Point(dx, dy),
gfx::Point(m_tileSize.w - int(x_uneven), m_tileSize.h - int(y_uneven)) };
}
std::vector<gfx::Point> Grid::getIsometricLine(void) const
std::vector<gfx::Point> Grid::getIsometricLine(const gfx::Size& sz)
{
std::vector<gfx::Point> result;
const auto pts = getIsometricLinePoints();
const auto guide = IsometricGuide(sz);
// We use the line drawing algorithm to find the points
// for a single pixel-precise line
doc::algo_line_continuous_with_fix_for_line_brush(pts[0].x,
pts[0].y,
pts[1].x,
pts[1].y,
doc::algo_line_continuous_with_fix_for_line_brush(guide.start.x,
guide.start.y,
guide.end.x,
guide.end.y,
&result,
(doc::AlgoPixel)&push_isometric_line_point);

View File

@ -84,10 +84,31 @@ public:
// Returns an array of tile positions that are touching the given region in the canvas
std::vector<gfx::Point> tilesInCanvasRegion(const gfx::Region& rgn) const;
// Helper structure for calculating both isometric grid cells
// as well as point snapping
struct IsometricGuide {
gfx::Point start;
gfx::Point end;
union {
struct {
bool evenWidth : 1;
bool evenHeight : 1;
bool evenHalfWidth : 1;
bool evenHalfHeight : 1;
bool squareRatio : 1;
bool oddSize : 1;
bool shareEdges : 1;
};
int flags;
};
IsometricGuide(const gfx::Size& sz);
};
// Returns an array of coordinates used for calculating the
// pixel-precise bounds of an isometric grid cell
std::array<gfx::Point, 3> getIsometricLinePoints() const;
std::vector<gfx::Point> getIsometricLine() const;
static std::vector<gfx::Point> getIsometricLine(const gfx::Size& sz);
private:
gfx::Size m_tileSize;