aseprite/src/render/ordered_dither.cpp

284 lines
9.7 KiB
C++

// Aseprite Render Library
// Copyright (c) 2019-2022 Igara Studio S.A.
// Copyright (c) 2017 David Capello
//
// This file is released under the terms of the MIT license.
// Read LICENSE.txt for more information.
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "render/ordered_dither.h"
#include "render/dithering.h"
#include "render/dithering_matrix.h"
#include <algorithm>
#include <limits>
#include <vector>
namespace render {
// Base 2x2 dither matrix, called D(2):
int BayerMatrix::D2[4] = { 0, 2, 3, 1 };
static int colorDistance(int r1, int g1, int b1, int a1, int r2, int g2, int b2, int a2)
{
int result = 0;
// The factor for RGB components came from doc::rba_luma()
if (a1 && a2) {
result += int(std::abs(r1 - r2) * 2126 + std::abs(g1 - g2) * 7152 + std::abs(b1 - b2) * 722);
}
result += (std::abs(a1 - a2) * 20000);
return result;
}
OrderedDither::OrderedDither(int transparentIndex) : m_transparentIndex(transparentIndex)
{
}
doc::color_t OrderedDither::ditherRgbPixelToIndex(const DitheringMatrix& matrix,
const doc::color_t color,
const int x,
const int y,
const doc::RgbMap* rgbmap,
const doc::Palette* palette)
{
// Alpha=0, output transparent color
if (m_transparentIndex >= 0 && doc::rgba_geta(color) == 0)
return m_transparentIndex;
// Get the nearest color in the palette with the given RGB
// values.
int r = doc::rgba_getr(color);
int g = doc::rgba_getg(color);
int b = doc::rgba_getb(color);
int a = doc::rgba_geta(color);
doc::color_t nearest1idx = (rgbmap ? rgbmap->mapColor(r, g, b, a) :
palette->findBestfit(r, g, b, a, m_transparentIndex));
doc::color_t nearest1rgb = palette->getEntry(nearest1idx);
int r1 = doc::rgba_getr(nearest1rgb);
int g1 = doc::rgba_getg(nearest1rgb);
int b1 = doc::rgba_getb(nearest1rgb);
int a1 = doc::rgba_geta(nearest1rgb);
// Between the original color ('color' parameter) and 'nearest'
// index, we have an error (r1-r, g1-g, b1-b). Here we try to
// find the other nearest color with the same error but with
// different sign.
int r2 = r - (r1 - r);
int g2 = g - (g1 - g);
int b2 = b - (b1 - b);
int a2 = a - (a1 - a);
r2 = std::clamp(r2, 0, 255);
g2 = std::clamp(g2, 0, 255);
b2 = std::clamp(b2, 0, 255);
a2 = std::clamp(a2, 0, 255);
doc::color_t nearest2idx = (rgbmap ? rgbmap->mapColor(r2, g2, b2, a2) :
palette->findBestfit(r2, g2, b2, a2, m_transparentIndex));
// If both possible RGB colors use the same index, we cannot
// make any dither with these two colors.
if (nearest1idx == nearest2idx)
return nearest1idx;
doc::color_t nearest2rgb = palette->getEntry(nearest2idx);
r2 = doc::rgba_getr(nearest2rgb);
g2 = doc::rgba_getg(nearest2rgb);
b2 = doc::rgba_getb(nearest2rgb);
a2 = doc::rgba_geta(nearest2rgb);
// Here we calculate the distance between the original 'color'
// and 'nearest1rgb'. The maximum possible distance is given by
// the distance between 'nearest1rgb' and 'nearest2rgb'.
int d = colorDistance(r1, g1, b1, a1, r, g, b, a);
int D = colorDistance(r1, g1, b1, a1, r2, g2, b2, a2);
if (D == 0)
return nearest1idx;
// We convert the d/D factor to the matrix range to compare it
// with the threshold. If d > threshold, it means that we're
// closer to 'nearest2rgb' than to 'nearest1rgb'.
d = matrix.maxValue() * d / D;
int threshold = matrix(y, x);
return (d > threshold ? nearest2idx : nearest1idx);
}
OrderedDither2::OrderedDither2(int transparentIndex) : m_transparentIndex(transparentIndex)
{
}
// New ordered dithering algorithm using the best match between two
// indexes to create a mix that can reproduce the original RGB
// color.
//
// TODO it's too slow for big color palettes:
// O(W*H*P) where P is the number of palette entries
//
// Some ideas from:
// http://bisqwit.iki.fi/story/howto/dither/jy/
//
doc::color_t OrderedDither2::ditherRgbPixelToIndex(const DitheringMatrix& matrix,
const doc::color_t color,
const int x,
const int y,
const doc::RgbMap* rgbmap,
const doc::Palette* palette)
{
// Alpha=0, output transparent color
if (m_transparentIndex >= 0 && doc::rgba_geta(color) == 0) {
return m_transparentIndex;
}
// Get RGBA values
const int r = doc::rgba_getr(color);
const int g = doc::rgba_getg(color);
const int b = doc::rgba_getb(color);
const int a = doc::rgba_geta(color);
// Find the best palette entry for the given color.
const int index = (rgbmap ? rgbmap->mapColor(r, g, b, a) :
palette->findBestfit(r, g, b, a, m_transparentIndex));
const doc::color_t color0 = palette->getEntry(index);
const int r0 = doc::rgba_getr(color0);
const int g0 = doc::rgba_getg(color0);
const int b0 = doc::rgba_getb(color0);
const int a0 = doc::rgba_geta(color0);
// Find the best combination between the found nearest index and
// an alternative palette color to create the original RGB color.
int bestMix = 0;
int altIndex = -1;
int closestDistance = std::numeric_limits<int>::max();
for (int i = 0; i < palette->size(); ++i) {
if (i == m_transparentIndex)
continue;
const doc::color_t color1 = palette->getEntry(i);
const int r1 = doc::rgba_getr(color1);
const int g1 = doc::rgba_getg(color1);
const int b1 = doc::rgba_getb(color1);
const int a1 = doc::rgba_geta(color1);
// Find the best "mix factor" between both palette indexes to
// reproduce the original RGB color. A possible algorithm
// would be to iterate all possible mix factors from 0 to
// maxMixValue, but this is too slow, so we try to figure out
// a good mix factor using the RGB values of color0 and
// color1.
int maxMixValue = matrix.maxValue();
int mix = 0;
int div = 0;
// If Alpha=0, RGB values are not representative for this entry.
if (a && a0 && a1) {
if (r1 - r0)
mix += 2126 * maxMixValue * (r - r0) / (r1 - r0), div += 2126;
if (g1 - g0)
mix += 7152 * maxMixValue * (g - g0) / (g1 - g0), div += 7152;
if (b1 - b0)
mix += 722 * maxMixValue * (b - b0) / (b1 - b0), div += 722;
}
if (a1 - a0)
mix += 20000 * maxMixValue * (a - a0) / (a1 - a0), div += 20000;
if (mix) {
if (div)
mix /= div;
mix = std::clamp(mix, 0, maxMixValue);
}
const int rM = r0 + (r1 - r0) * mix / maxMixValue;
const int gM = g0 + (g1 - g0) * mix / maxMixValue;
const int bM = b0 + (b1 - b0) * mix / maxMixValue;
const int aM = a0 + (a1 - a0) * mix / maxMixValue;
const int d = colorDistance(r, g, b, a, rM, gM, bM, aM)
// Don't use an alternative index if it's too far away from the first index
+ colorDistance(r0, g0, b0, a0, r1, g1, b1, a1) / 10;
if (closestDistance > d) {
closestDistance = d;
bestMix = mix;
altIndex = i;
}
}
// Using the bestMix factor the dithering matrix tells us if we
// should paint with altIndex or index in this x,y position.
if (altIndex >= 0 && matrix(y, x) < bestMix)
return altIndex;
else
return index;
}
void dither_rgb_image_to_indexed(DitheringAlgorithmBase& algorithm,
const Dithering& dithering,
const doc::Image* srcImage,
doc::Image* dstImage,
const doc::RgbMap* rgbmap,
const doc::Palette* palette,
TaskDelegate* delegate)
{
const int w = srcImage->width();
const int h = srcImage->height();
algorithm.start(srcImage, dstImage, dithering.factor());
if (algorithm.dimensions() == 1) {
const doc::LockImageBits<doc::RgbTraits> srcBits(srcImage);
doc::LockImageBits<doc::IndexedTraits> dstBits(dstImage);
auto srcIt = srcBits.begin();
auto dstIt = dstBits.begin();
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x, ++srcIt, ++dstIt) {
ASSERT(srcIt != srcBits.end());
ASSERT(dstIt != dstBits.end());
*dstIt = algorithm.ditherRgbPixelToIndex(dithering.matrix(), *srcIt, x, y, rgbmap, palette);
}
if (delegate) {
if (!delegate->continueTask())
return;
delegate->notifyTaskProgress(double(y + 1) / double(h));
}
}
}
else {
auto dstIt = doc::get_pixel_address_fast<doc::IndexedTraits>(dstImage, 0, 0);
auto zigZag = dithering.zigzag();
for (int y = 0; y < h; ++y) {
if (zigZag && (y & 1)) { // Odd row: go from right-to-left
dstIt += w - 1;
for (int x = w - 1; x >= 0; --x, --dstIt) {
ASSERT(dstIt == doc::get_pixel_address_fast<doc::IndexedTraits>(dstImage, x, y));
*dstIt = algorithm.ditherRgbToIndex2D(x, y, rgbmap, palette, -1);
}
dstIt += w + 1;
}
else { // Even row: go from left-to-right
for (int x = 0; x < w; ++x, ++dstIt) {
ASSERT(dstIt == doc::get_pixel_address_fast<doc::IndexedTraits>(dstImage, x, y));
*dstIt = algorithm.ditherRgbToIndex2D(x, y, rgbmap, palette, +1);
}
}
if (delegate) {
if (!delegate->continueTask())
return;
delegate->notifyTaskProgress(double(y + 1) / double(h));
}
}
}
algorithm.finish();
}
} // namespace render