mirror of https://gitlab.com/libeigen/eigen.git
165 lines
5.2 KiB
C++
165 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "common.h"
|
|
|
|
EIGEN_BLAS_FUNC(axpy)
|
|
(const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *py, const int *incy) {
|
|
const Scalar *x = reinterpret_cast<const Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
|
|
|
|
if (*n <= 0) return;
|
|
|
|
if (*incx == 1 && *incy == 1)
|
|
make_vector(y, *n) += alpha * make_vector(x, *n);
|
|
else if (*incx > 0 && *incy > 0)
|
|
make_vector(y, *n, *incy) += alpha * make_vector(x, *n, *incx);
|
|
else if (*incx > 0 && *incy < 0)
|
|
make_vector(y, *n, -*incy) += alpha * make_vector(x, *n, *incx).reverse();
|
|
else if (*incx < 0 && *incy > 0)
|
|
make_vector(y, *n, *incy) += alpha * make_vector(x, *n, -*incx).reverse();
|
|
else if (*incx < 0 && *incy < 0)
|
|
make_vector(y, *n, -*incy) += alpha * make_vector(x, *n, -*incx);
|
|
}
|
|
|
|
EIGEN_BLAS_FUNC(axpby)
|
|
(const int *pn, const RealScalar *palpha, const RealScalar *px, const int *pincx, const RealScalar *pbeta,
|
|
RealScalar *py, const int *pincy) {
|
|
const Scalar *x = reinterpret_cast<const Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
const Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
|
|
const Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
|
|
const int n = *pn;
|
|
|
|
if (n <= 0) return;
|
|
|
|
if (Eigen::numext::equal_strict(beta, Scalar(1))) {
|
|
EIGEN_BLAS_FUNC_NAME(axpy)(pn, palpha, px, pincx, py, pincy);
|
|
return;
|
|
}
|
|
|
|
const int incx = *pincx;
|
|
const int incy = *pincy;
|
|
|
|
if (incx == 1 && incy == 1)
|
|
make_vector(y, n) = alpha * make_vector(x, n) + beta * make_vector(y, n);
|
|
else if (incx > 0 && incy > 0)
|
|
make_vector(y, n, incy) = alpha * make_vector(x, n, incx) + beta * make_vector(y, n, incy);
|
|
else if (incx > 0 && incy < 0)
|
|
make_vector(y, n, -incy) = alpha * make_vector(x, n, incx).reverse() + beta * make_vector(y, n, -incy);
|
|
else if (incx < 0 && incy > 0)
|
|
make_vector(y, n, incy) = alpha * make_vector(x, n, -incx).reverse() + beta * make_vector(y, n, incy);
|
|
else if (incx < 0 && incy < 0)
|
|
make_vector(y, n, -incy) = alpha * make_vector(x, n, -incx) + beta * make_vector(y, n, -incy);
|
|
}
|
|
|
|
EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) {
|
|
if (*n <= 0) return;
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
|
|
// be careful, *incx==0 is allowed !!
|
|
if (*incx == 1 && *incy == 1)
|
|
make_vector(y, *n) = make_vector(x, *n);
|
|
else {
|
|
if (*incx < 0) x = x - (*n - 1) * (*incx);
|
|
if (*incy < 0) y = y - (*n - 1) * (*incy);
|
|
for (int i = 0; i < *n; ++i) {
|
|
*y = *x;
|
|
x += *incx;
|
|
y += *incy;
|
|
}
|
|
}
|
|
}
|
|
|
|
EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) {
|
|
using std::abs;
|
|
using std::sqrt;
|
|
|
|
Scalar &a = *reinterpret_cast<Scalar *>(pa);
|
|
Scalar &b = *reinterpret_cast<Scalar *>(pb);
|
|
RealScalar *c = pc;
|
|
Scalar *s = reinterpret_cast<Scalar *>(ps);
|
|
|
|
#if !ISCOMPLEX
|
|
Scalar r, z;
|
|
Scalar aa = abs(a);
|
|
Scalar ab = abs(b);
|
|
if ((aa + ab) == Scalar(0)) {
|
|
*c = 1;
|
|
*s = 0;
|
|
r = 0;
|
|
z = 0;
|
|
} else {
|
|
r = sqrt(a * a + b * b);
|
|
Scalar amax = aa > ab ? a : b;
|
|
r = amax > 0 ? r : -r;
|
|
*c = a / r;
|
|
*s = b / r;
|
|
z = 1;
|
|
if (aa > ab) z = *s;
|
|
if (ab > aa && *c != RealScalar(0)) z = Scalar(1) / *c;
|
|
}
|
|
*pa = r;
|
|
*pb = z;
|
|
#else
|
|
Scalar alpha;
|
|
RealScalar norm, scale;
|
|
if (abs(a) == RealScalar(0)) {
|
|
*c = RealScalar(0);
|
|
*s = Scalar(1);
|
|
a = b;
|
|
} else {
|
|
scale = abs(a) + abs(b);
|
|
norm = scale * sqrt((Eigen::numext::abs2(a / scale)) + (Eigen::numext::abs2(b / scale)));
|
|
alpha = a / abs(a);
|
|
*c = abs(a) / norm;
|
|
*s = alpha * Eigen::numext::conj(b) / norm;
|
|
a = alpha * norm;
|
|
}
|
|
#endif
|
|
|
|
// JacobiRotation<Scalar> r;
|
|
// r.makeGivens(a,b);
|
|
// *c = r.c();
|
|
// *s = r.s();
|
|
}
|
|
|
|
EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) {
|
|
if (*n <= 0) return;
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
if (*incx == 1)
|
|
make_vector(x, *n) *= alpha;
|
|
else
|
|
make_vector(x, *n, std::abs(*incx)) *= alpha;
|
|
}
|
|
|
|
EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) {
|
|
if (*n <= 0) return;
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
|
|
if (*incx == 1 && *incy == 1)
|
|
make_vector(y, *n).swap(make_vector(x, *n));
|
|
else if (*incx > 0 && *incy > 0)
|
|
make_vector(y, *n, *incy).swap(make_vector(x, *n, *incx));
|
|
else if (*incx > 0 && *incy < 0)
|
|
make_vector(y, *n, -*incy).reverse().swap(make_vector(x, *n, *incx));
|
|
else if (*incx < 0 && *incy > 0)
|
|
make_vector(y, *n, *incy).swap(make_vector(x, *n, -*incx).reverse());
|
|
else if (*incx < 0 && *incy < 0)
|
|
make_vector(y, *n, -*incy).reverse().swap(make_vector(x, *n, -*incx).reverse());
|
|
}
|