elasticsearch/docs/reference/ml/anomaly-detection/apis/get-ml-info.asciidoc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

129 lines
3.3 KiB
Plaintext
Raw Normal View History

[role="xpack"]
[testenv="platinum"]
[[get-ml-info]]
= Get machine learning info API
[subs="attributes"]
++++
2018-12-21 02:23:28 +08:00
<titleabbrev>Get {ml} info</titleabbrev>
++++
Returns defaults and limits used by machine learning.
[[get-ml-info-request]]
== {api-request-title}
`GET _ml/info`
[[get-ml-info-prereqs]]
== {api-prereq-title}
Requires the `monitor_ml` cluster privilege. This privilege is included in the
`machine_learning_user` built-in role.
[[get-ml-info-desc]]
== {api-description-title}
This endpoint is designed to be used by a user interface that needs to fully
understand machine learning configurations where some options are not specified,
2021-03-31 21:57:47 +08:00
meaning that the defaults should be used. This endpoint may be used to find out
what those defaults are. It also provides information about the maximum size
of {ml} jobs that could run in the current cluster configuration.
[[get-ml-info-example]]
== {api-examples-title}
The endpoint takes no arguments:
[source,console]
--------------------------------------------------
GET _ml/info
--------------------------------------------------
// TEST
This is a possible response:
[source,console-result]
----
{
"defaults" : {
"anomaly_detectors" : {
"categorization_analyzer" : {
"char_filter" : [
"first_line_with_letters"
],
"tokenizer" : "ml_standard",
"filter" : [
{
"type" : "stop",
"stopwords" : [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
"Mon",
"Tue",
"Wed",
"Thu",
"Fri",
"Sat",
"Sun",
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
"GMT",
"UTC"
]
}
]
},
"model_memory_limit" : "1gb",
"categorization_examples_limit" : 4,
"model_snapshot_retention_days" : 10,
"daily_model_snapshot_retention_after_days" : 1
},
"datafeeds" : {
"scroll_size" : 1000
}
},
"upgrade_mode": false,
"native_code" : {
"version": "7.0.0",
"build_hash": "99a07c016d5a73"
},
"limits" : {
"effective_max_model_memory_limit": "28961mb",
"total_ml_memory": "86883mb"
}
}
----
// TESTRESPONSE[s/"upgrade_mode": false/"upgrade_mode": $body.upgrade_mode/]
// TESTRESPONSE[s/"version": "7.0.0",/"version": "$body.native_code.version",/]
// TESTRESPONSE[s/"build_hash": "99a07c016d5a73"/"build_hash": "$body.native_code.build_hash"/]
// TESTRESPONSE[s/"effective_max_model_memory_limit": "28961mb"/"effective_max_model_memory_limit": "$body.limits.effective_max_model_memory_limit"/]
// TESTRESPONSE[s/"total_ml_memory": "86883mb"/"total_ml_memory": "$body.limits.total_ml_memory"/]