elasticsearch/docs/reference/inference/put-inference.asciidoc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

328 lines
9.5 KiB
Plaintext
Raw Normal View History

[role="xpack"]
[[put-inference-api]]
=== Create {infer} API
experimental[]
Creates a model to perform an {infer} task.
IMPORTANT: The {infer} APIs enable you to use certain services, such as ELSER,
OpenAI, or Hugging Face, in your cluster. This is not the same feature that you
can use on an ML node with custom {ml} models. If you want to train and use your
own model, use the <<ml-df-trained-models-apis>>.
[discrete]
[[put-inference-api-request]]
==== {api-request-title}
`PUT /_inference/<task_type>/<model_id>`
[discrete]
[[put-inference-api-prereqs]]
==== {api-prereq-title}
* Requires the `manage` <<privileges-list-cluster,cluster privilege>>.
[discrete]
[[put-inference-api-desc]]
==== {api-description-title}
The create {infer} API enables you to create and configure an {infer} model to
perform a specific {infer} task.
The following services are available through the {infer} API:
* Cohere
* ELSER
* Hugging Face
* OpenAI
[discrete]
[[put-inference-api-path-params]]
==== {api-path-parms-title}
`<model_id>`::
(Required, string)
The unique identifier of the model.
`<task_type>`::
(Required, string)
The type of the {infer} task that the model will perform. Available task types:
* `sparse_embedding`,
* `text_embedding`.
[discrete]
[[put-inference-api-request-body]]
== {api-request-body-title}
`service`::
(Required, string)
The type of service supported for the specified task type.
Available services:
* `cohere`: specify the `text_embedding` task type to use the Cohere service.
* `elser`: specify the `sparse_embedding` task type to use the ELSER service.
* `hugging_face`: specify the `text_embedding` task type to use the Hugging Face
service.
* `openai`: specify the `text_embedding` task type to use the OpenAI service.
`service_settings`::
(Required, object)
Settings used to install the {infer} model. These settings are specific to the
`service` you specified.
+
.`service_settings` for `cohere`
[%collapsible%closed]
=====
`api_key`:::
(Required, string)
A valid API key of your Cohere account. You can find your Cohere API keys or you
can create a new one
https://dashboard.cohere.com/api-keys[on the API keys settings page].
IMPORTANT: You need to provide the API key only once, during the {infer} model
creation. The <<get-inference-api>> does not retrieve your API key. After
creating the {infer} model, you cannot change the associated API key. If you
want to use a different API key, delete the {infer} model and recreate it with
the same name and the updated API key.
`embedding_type`::
(Optional, string)
Specifies the types of embeddings you want to get back. Defaults to `float`.
Valid values are:
* `float`: use it for the default float embeddings.
* `int8`: use it for signed int8 embeddings.
`model_id`::
(Optional, string)
The name of the model to use for the {infer} task. To review the available
models, refer to the
https://docs.cohere.com/reference/embed[Cohere docs]. Defaults to
`embed-english-v2.0`.
=====
+
.`service_settings` for `elser`
[%collapsible%closed]
=====
`num_allocations`:::
(Required, integer)
The number of model allocations to create.
`num_threads`:::
(Required, integer)
The number of threads to use by each model allocation.
=====
+
.`service_settings` for `hugging_face`
[%collapsible%closed]
=====
`api_key`:::
(Required, string)
A valid access token of your Hugging Face account. You can find your Hugging
Face access tokens or you can create a new one
https://huggingface.co/settings/tokens[on the settings page].
IMPORTANT: You need to provide the API key only once, during the {infer} model
creation. The <<get-inference-api>> does not retrieve your API key. After
creating the {infer} model, you cannot change the associated API key. If you
want to use a different API key, delete the {infer} model and recreate it with
the same name and the updated API key.
`url`:::
(Required, string)
The URL endpoint to use for the requests.
=====
+
.`service_settings` for `openai`
[%collapsible%closed]
=====
`api_key`:::
(Required, string)
A valid API key of your OpenAI account. You can find your OpenAI API keys in
your OpenAI account under the
https://platform.openai.com/api-keys[API keys section].
IMPORTANT: You need to provide the API key only once, during the {infer} model
creation. The <<get-inference-api>> does not retrieve your API key. After
creating the {infer} model, you cannot change the associated API key. If you
want to use a different API key, delete the {infer} model and recreate it with
the same name and the updated API key.
`organization_id`:::
(Optional, string)
The unique identifier of your organization. You can find the Organization ID in
your OpenAI account under
https://platform.openai.com/account/organization[**Settings** > **Organizations**].
`url`:::
(Optional, string)
The URL endpoint to use for the requests. Can be changed for testing purposes.
Defaults to `https://api.openai.com/v1/embeddings`.
=====
`task_settings`::
(Optional, object)
Settings to configure the {infer} task. These settings are specific to the
`<task_type>` you specified.
+
.`task_settings` for `text_embedding`
[%collapsible%closed]
=====
`input_type`:::
(optional, string)
For `cohere` service only. Specifies the type of input passed to the model.
Valid values are:
* `classification`: use it for embeddings passed through a text classifier.
* `clusterning`: use it for the embeddings run through a clustering algorithm.
* `ingest`: use it for storing document embeddings in a vector database.
* `search`: use it for storing embeddings of search queries run against a
vector data base to find relevant documents.
`model`:::
(Optional, string)
For `openai` sevice only. The name of the model to use for the {infer} task. Refer
to the
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings[OpenAI documentation]
for the list of available text embedding models.
`truncate`:::
(Optional, string)
For `cohere` service only. Specifies how the API handles inputs longer than the
maximum token length. Defaults to `END`. Valid values are:
* `NONE`: when the input exceeds the maximum input token length an error is
returned.
* `START`: when the input exceeds the maximum input token length the start of
the input is discarded.
* `END`: when the input exceeds the maximum input token length the end of
the input is discarded.
=====
[discrete]
[[put-inference-api-example]]
==== {api-examples-title}
This section contains example API calls for every service type.
[discrete]
[[inference-example-cohere]]
===== Cohere service
The following example shows how to create an {infer} model called
`cohere_embeddings` to perform a `text_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/cohere-embeddings
{
"service": "cohere",
"service_settings": {
"api_key": "<api_key>",
"model": "embed-english-light-v3.0",
"embedding_type": "int8"
},
"task_settings": {
}
}
------------------------------------------------------------
// TEST[skip:TBD]
[discrete]
[[inference-example-elser]]
===== ELSER service
The following example shows how to create an {infer} model called
`my-elser-model` to perform a `sparse_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/sparse_embedding/my-elser-model
{
"service": "elser",
"service_settings": {
"num_allocations": 1,
"num_threads": 1
},
"task_settings": {}
}
------------------------------------------------------------
// TEST[skip:TBD]
Example response:
[source,console-result]
------------------------------------------------------------
{
"model_id": "my-elser-model",
"task_type": "sparse_embedding",
"service": "elser",
"service_settings": {
"num_allocations": 1,
"num_threads": 1
},
"task_settings": {}
}
------------------------------------------------------------
// NOTCONSOLE
[discrete]
[[inference-example-hugging-face]]
===== Hugging Face service
The following example shows how to create an {infer} model called
`hugging-face_embeddings` to perform a `text_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/hugging-face-embeddings
{
"service": "hugging_face",
"service_settings": {
"api_key": "<access_token>", <1>
"url": "<url_endpoint>" <2>
}
}
------------------------------------------------------------
// TEST[skip:TBD]
<1> A valid Hugging Face access token. You can find on the
https://huggingface.co/settings/tokens[settings page of your account].
<2> The {infer} endpoint URL you created on Hugging Face.
Create a new {infer} endpoint on
https://ui.endpoints.huggingface.co/[the Hugging Face endpoint page] to get an
endpoint URL. Select the model you want to use on the new endpoint creation page
- for example `intfloat/e5-small-v2` - then select the `Sentence Embeddings`
task under the Advanced configuration section. Create the endpoint. Copy the URL
after the endpoint initialization has been finished.
[discrete]
[[inference-example-openai]]
===== OpenAI service
The following example shows how to create an {infer} model called
`openai_embeddings` to perform a `text_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/openai_embeddings
{
"service": "openai",
"service_settings": {
"api_key": "<api_key>"
},
"task_settings": {
"model": "text-embedding-ada-002"
}
}
------------------------------------------------------------
// TEST[skip:TBD]