166 lines
4.8 KiB
Markdown
166 lines
4.8 KiB
Markdown
|
---
|
|||
|
mapped_pages:
|
|||
|
- https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-kuromoji-tokenizer.html
|
|||
|
---
|
|||
|
|
|||
|
# kuromoji_tokenizer [analysis-kuromoji-tokenizer]
|
|||
|
|
|||
|
The `kuromoji_tokenizer` accepts the following settings:
|
|||
|
|
|||
|
`mode`
|
|||
|
: The tokenization mode determines how the tokenizer handles compound and unknown words. It can be set to:
|
|||
|
|
|||
|
`normal`
|
|||
|
: Normal segmentation, no decomposition for compounds. Example output:
|
|||
|
|
|||
|
```
|
|||
|
関西国際空港
|
|||
|
アブラカダブラ
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
`search`
|
|||
|
: Segmentation geared towards search. This includes a decompounding process for long nouns, also including the full compound token as a synonym. Example output:
|
|||
|
|
|||
|
```
|
|||
|
関西, 関西国際空港, 国際, 空港
|
|||
|
アブラカダブラ
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
`extended`
|
|||
|
: Extended mode outputs unigrams for unknown words. Example output:
|
|||
|
|
|||
|
```
|
|||
|
関西, 関西国際空港, 国際, 空港
|
|||
|
ア, ブ, ラ, カ, ダ, ブ, ラ
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
`discard_punctuation`
|
|||
|
: Whether punctuation should be discarded from the output. Defaults to `true`.
|
|||
|
|
|||
|
`lenient`
|
|||
|
: Whether the `user_dictionary` should be deduplicated on the provided `text`. False by default causing duplicates to generate an error.
|
|||
|
|
|||
|
`user_dictionary`
|
|||
|
: The Kuromoji tokenizer uses the MeCab-IPADIC dictionary by default. A `user_dictionary` may be appended to the default dictionary. The dictionary should have the following CSV format:
|
|||
|
|
|||
|
```text
|
|||
|
<text>,<token 1> ... <token n>,<reading 1> ... <reading n>,<part-of-speech tag>
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
As a demonstration of how the user dictionary can be used, save the following dictionary to `$ES_HOME/config/userdict_ja.txt`:
|
|||
|
|
|||
|
```text
|
|||
|
東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞
|
|||
|
```
|
|||
|
|
|||
|
You can also inline the rules directly in the tokenizer definition using the `user_dictionary_rules` option:
|
|||
|
|
|||
|
```console
|
|||
|
PUT kuromoji_sample
|
|||
|
{
|
|||
|
"settings": {
|
|||
|
"index": {
|
|||
|
"analysis": {
|
|||
|
"tokenizer": {
|
|||
|
"kuromoji_user_dict": {
|
|||
|
"type": "kuromoji_tokenizer",
|
|||
|
"mode": "extended",
|
|||
|
"user_dictionary_rules": ["東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞"]
|
|||
|
}
|
|||
|
},
|
|||
|
"analyzer": {
|
|||
|
"my_analyzer": {
|
|||
|
"type": "custom",
|
|||
|
"tokenizer": "kuromoji_user_dict"
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
`nbest_cost`/`nbest_examples`
|
|||
|
: Additional expert user parameters `nbest_cost` and `nbest_examples` can be used to include additional tokens that are most likely according to the statistical model. If both parameters are used, the largest number of both is applied.
|
|||
|
|
|||
|
`nbest_cost`
|
|||
|
: The `nbest_cost` parameter specifies an additional Viterbi cost. The KuromojiTokenizer will include all tokens in Viterbi paths that are within the nbest_cost value of the best path.
|
|||
|
|
|||
|
`nbest_examples`
|
|||
|
: The `nbest_examples` can be used to find a `nbest_cost` value based on examples. For example, a value of /箱根山-箱根/成田空港-成田/ indicates that in the texts, 箱根山 (Mt. Hakone) and 成田空港 (Narita Airport) we’d like a cost that gives is us 箱根 (Hakone) and 成田 (Narita).
|
|||
|
|
|||
|
|
|||
|
Then create an analyzer as follows:
|
|||
|
|
|||
|
```console
|
|||
|
PUT kuromoji_sample
|
|||
|
{
|
|||
|
"settings": {
|
|||
|
"index": {
|
|||
|
"analysis": {
|
|||
|
"tokenizer": {
|
|||
|
"kuromoji_user_dict": {
|
|||
|
"type": "kuromoji_tokenizer",
|
|||
|
"mode": "extended",
|
|||
|
"discard_punctuation": "false",
|
|||
|
"user_dictionary": "userdict_ja.txt",
|
|||
|
"lenient": "true"
|
|||
|
}
|
|||
|
},
|
|||
|
"analyzer": {
|
|||
|
"my_analyzer": {
|
|||
|
"type": "custom",
|
|||
|
"tokenizer": "kuromoji_user_dict"
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
GET kuromoji_sample/_analyze
|
|||
|
{
|
|||
|
"analyzer": "my_analyzer",
|
|||
|
"text": "東京スカイツリー"
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
The above `analyze` request returns the following:
|
|||
|
|
|||
|
```console-result
|
|||
|
{
|
|||
|
"tokens" : [ {
|
|||
|
"token" : "東京",
|
|||
|
"start_offset" : 0,
|
|||
|
"end_offset" : 2,
|
|||
|
"type" : "word",
|
|||
|
"position" : 0
|
|||
|
}, {
|
|||
|
"token" : "スカイツリー",
|
|||
|
"start_offset" : 2,
|
|||
|
"end_offset" : 8,
|
|||
|
"type" : "word",
|
|||
|
"position" : 1
|
|||
|
} ]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
`discard_compound_token`
|
|||
|
: Whether original compound tokens should be discarded from the output with `search` mode. Defaults to `false`. Example output with `search` or `extended` mode and this option `true`:
|
|||
|
|
|||
|
```
|
|||
|
関西, 国際, 空港
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
::::{note}
|
|||
|
If a text contains full-width characters, the `kuromoji_tokenizer` tokenizer can produce unexpected tokens. To avoid this, add the [`icu_normalizer` character filter](/reference/elasticsearch-plugins/analysis-icu-normalization-charfilter.md) to your analyzer. See [Normalize full-width characters](/reference/elasticsearch-plugins/analysis-kuromoji-analyzer.md#kuromoji-analyzer-normalize-full-width-characters).
|
|||
|
::::
|
|||
|
|
|||
|
|