* master: (113 commits)
Introduce new hook data builders for Issue and MergeRequest
Don't create todos for old issue assignees
Start adding Gitlab::HookData::IssuableBuilder
Include the changes in issuable webhook payloads
Rename the `codeclimate` job to `codequality`
Don't show an "Unsubscribe" link in snippet comment notifications
Add QA::Scenario::Gitlab::Group::Create
Removes CommitsList from global namespace
Fix wiki empty page translation namespace not being removed
Fixes mini graph in commit view
Fix link to new i18n index page
Update i18n docs
Move i18n/introduction to i18n/index
Resolve "Simple documentation update - backup to restore in restore section"
Remove AjaxLoadingSpinner and CreateLabelDropdown from global namespace
Move cycle analytics banner into a vue file
Updated Icons + Fix for Collapsed Groups Angle
Don't create fork networks for root projects that are deleted
Remove executable permissions on images to make docs lint happy
Sync up hard coded DN class in migration
...
This change fix a memory leak due to a Webkit bug:
https://github.com/ariya/phantomjs/issues/12903
Also:
- Whitelist only localhost and 127.0.0.1 in Capybara + JS specs
- Blacklist all requests to media such as images, videos, PDFs, CSVs etc.
- Log all the requests made.
Signed-off-by: Rémy Coutable <remy@rymai.me>
Once https://github.com/ArturT/knapsack/issues/57 is solved and released
in a new gem version, we can remove the KNAPSACK_TEST_DIR in
.gitlab-ci.yml.
Signed-off-by: Rémy Coutable <remy@rymai.me>
Also disabled assets warming for Capybara/RSpec and remove a check to
skip assets warming when ./tmp/cache/assets/test exists because assets
are now served by webpack-dev-server.
Signed-off-by: Rémy Coutable <remy@rymai.me>
Before:
Scenario: Viewing invitation when signed out
✔ Given "John Doe" is owner of group "Owned" # features/steps/shared/group.rb:8
After:
Scenario: Viewing invitation when signed out # features/invites.feature:6
✔ Given "John Doe" is owner of group "Owned" # features/steps/shared/group.rb:8
Now if a scenario fails we can easily rerun it with a specific line
number.
There were two cases that could be problematic:
1. Because sometimes AuthorizedProjectsWorker would be scheduled in a
transaction it was possible for a job to run/complete before a
COMMIT; resulting in it either producing an error, or producing no
new data.
2. When scheduling jobs the code would not wait until completion. This
could lead to a user creating a project and then immediately trying
to push to it. Usually this will work fine, but given enough load it
might take a few seconds before a user has access.
The first one is problematic, the second one is mostly just annoying
(but annoying enough to warrant a solution).
This commit changes two things to deal with this:
1. Sidekiq scheduling now takes places after a COMMIT, this is ensured
by scheduling using Rails' after_commit hook instead of doing so in
an arbitrary method.
2. When scheduling jobs the calling thread now waits for all jobs to
complete.
Solution 2 requires tracking of job completions. Sidekiq provides a way
to find a job by its ID, but this involves scanning over the entire
queue; something that is very in-efficient for large queues. As such a
more efficient solution is necessary. There are two main Gems that can
do this in a more efficient manner:
* sidekiq-status
* sidekiq_status
No, this is not a joke. Both Gems do a similar thing (but slightly
different), and the only difference in their name is a dash vs an
underscore. Both Gems however provide far more than just checking if a
job has been completed, and both have their problems. sidekiq-status
does not appear to be actively maintained, with the last release being
in 2015. It also has some issues during testing as API calls are not
stubbed in any way. sidekiq_status on the other hand does not appear to
be very popular, and introduces a similar amount of code.
Because of this I opted to write a simple home grown solution. After
all, all we need is storing a job ID somewhere so we can efficiently
look it up; we don't need extra web UIs (as provided by sidekiq-status)
or complex APIs to update progress, etc.
This is where Gitlab::SidekiqStatus comes in handy. This namespace
contains some code used for tracking, removing, and looking up job IDs;
all without having to scan over an entire queue. Data is removed
explicitly, but also expires automatically just in case.
Using this API we can now schedule jobs in a fork-join like manner: we
schedule the jobs in Sidekiq, process them in parallel, then wait for
completion. By using Sidekiq we can leverage all the benefits such as
being able to scale across multiple cores and hosts, retrying failed
jobs, etc.
The one downside is that we need to make sure we can deal with
unexpected increases in job processing timings. To deal with this the
class Gitlab::JobWaiter (used for waiting for jobs to complete) will
only wait a number of seconds (30 by default). Once this timeout is
reached it will simply return.
For GitLab.com almost all AuthorizedProjectWorker jobs complete in
seconds, only very rarely do we spike to job timings of around a minute.
These in turn seem to be the result of external factors (e.g. deploys),
in which case a user is most likely not able to use the system anyway.
In short, this new solution should ensure that jobs are processed
properly and that in almost all cases a user has access to their
resources whenever they need to have access.
We were unintentionally hitting `gravatar.com` whenever a test that used
Poltergeist was run. This was certainly wasting their resources and
slowing down our tests even further, for no reason.
I suspect some combination of Knapsack tests cause no regular Rack tests
to be loaded (i.e. all JavaScript tests), which leads to the error:
ArgumentError: rack-test requires a rack application, but none was given
In CI, we precompile all the assets so there is no need to warm the
asset cache in any case.
Closes#23613
The problem occurred because asset compilation takes a long time, so
when the asset cache didn't exist and the first test ran, it would often
(randomly) time out during the generation before the actual test even
had a chance to run.
Now we check if the cache exists before the suite runs, and if not, we
manually fire a request to the root URL in order to generate it. This
should allow subsequent tests to use the cached assets.