mirror of https://github.com/grafana/grafana.git
				
				
				
			
		
			
				
	
	
		
			368 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Go
		
	
	
	
| // includes code from
 | |
| // https://raw.githubusercontent.com/rcrowley/go-metrics/master/sample.go
 | |
| // Copyright 2012 Richard Crowley. All rights reserved.
 | |
| 
 | |
| package metrics
 | |
| 
 | |
| import (
 | |
| 	"math/rand"
 | |
| 	"runtime"
 | |
| 	"testing"
 | |
| 	"time"
 | |
| )
 | |
| 
 | |
| // Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively
 | |
| // expensive computations like Variance, the cost of copying the Sample, as
 | |
| // approximated by a make and copy, is much greater than the cost of the
 | |
| // computation for small samples and only slightly less for large samples.
 | |
| func BenchmarkCompute1000(b *testing.B) {
 | |
| 	s := make([]int64, 1000)
 | |
| 	for i := 0; i < len(s); i++ {
 | |
| 		s[i] = int64(i)
 | |
| 	}
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		SampleVariance(s)
 | |
| 	}
 | |
| }
 | |
| func BenchmarkCompute1000000(b *testing.B) {
 | |
| 	s := make([]int64, 1000000)
 | |
| 	for i := 0; i < len(s); i++ {
 | |
| 		s[i] = int64(i)
 | |
| 	}
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		SampleVariance(s)
 | |
| 	}
 | |
| }
 | |
| func BenchmarkCopy1000(b *testing.B) {
 | |
| 	s := make([]int64, 1000)
 | |
| 	for i := 0; i < len(s); i++ {
 | |
| 		s[i] = int64(i)
 | |
| 	}
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		sCopy := make([]int64, len(s))
 | |
| 		copy(sCopy, s)
 | |
| 	}
 | |
| }
 | |
| func BenchmarkCopy1000000(b *testing.B) {
 | |
| 	s := make([]int64, 1000000)
 | |
| 	for i := 0; i < len(s); i++ {
 | |
| 		s[i] = int64(i)
 | |
| 	}
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		sCopy := make([]int64, len(s))
 | |
| 		copy(sCopy, s)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkExpDecaySample257(b *testing.B) {
 | |
| 	benchmarkSample(b, NewExpDecaySample(257, 0.015))
 | |
| }
 | |
| 
 | |
| func BenchmarkExpDecaySample514(b *testing.B) {
 | |
| 	benchmarkSample(b, NewExpDecaySample(514, 0.015))
 | |
| }
 | |
| 
 | |
| func BenchmarkExpDecaySample1028(b *testing.B) {
 | |
| 	benchmarkSample(b, NewExpDecaySample(1028, 0.015))
 | |
| }
 | |
| 
 | |
| func BenchmarkUniformSample257(b *testing.B) {
 | |
| 	benchmarkSample(b, NewUniformSample(257))
 | |
| }
 | |
| 
 | |
| func BenchmarkUniformSample514(b *testing.B) {
 | |
| 	benchmarkSample(b, NewUniformSample(514))
 | |
| }
 | |
| 
 | |
| func BenchmarkUniformSample1028(b *testing.B) {
 | |
| 	benchmarkSample(b, NewUniformSample(1028))
 | |
| }
 | |
| 
 | |
| func TestExpDecaySample10(t *testing.T) {
 | |
| 	rand.Seed(1)
 | |
| 	s := NewExpDecaySample(100, 0.99)
 | |
| 	for i := 0; i < 10; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	if size := s.Count(); 10 != size {
 | |
| 		t.Errorf("s.Count(): 10 != %v\n", size)
 | |
| 	}
 | |
| 	if size := s.Size(); 10 != size {
 | |
| 		t.Errorf("s.Size(): 10 != %v\n", size)
 | |
| 	}
 | |
| 	if l := len(s.Values()); 10 != l {
 | |
| 		t.Errorf("len(s.Values()): 10 != %v\n", l)
 | |
| 	}
 | |
| 	for _, v := range s.Values() {
 | |
| 		if v > 10 || v < 0 {
 | |
| 			t.Errorf("out of range [0, 10): %v\n", v)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestExpDecaySample100(t *testing.T) {
 | |
| 	rand.Seed(1)
 | |
| 	s := NewExpDecaySample(1000, 0.01)
 | |
| 	for i := 0; i < 100; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	if size := s.Count(); 100 != size {
 | |
| 		t.Errorf("s.Count(): 100 != %v\n", size)
 | |
| 	}
 | |
| 	if size := s.Size(); 100 != size {
 | |
| 		t.Errorf("s.Size(): 100 != %v\n", size)
 | |
| 	}
 | |
| 	if l := len(s.Values()); 100 != l {
 | |
| 		t.Errorf("len(s.Values()): 100 != %v\n", l)
 | |
| 	}
 | |
| 	for _, v := range s.Values() {
 | |
| 		if v > 100 || v < 0 {
 | |
| 			t.Errorf("out of range [0, 100): %v\n", v)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestExpDecaySample1000(t *testing.T) {
 | |
| 	rand.Seed(1)
 | |
| 	s := NewExpDecaySample(100, 0.99)
 | |
| 	for i := 0; i < 1000; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	if size := s.Count(); 1000 != size {
 | |
| 		t.Errorf("s.Count(): 1000 != %v\n", size)
 | |
| 	}
 | |
| 	if size := s.Size(); 100 != size {
 | |
| 		t.Errorf("s.Size(): 100 != %v\n", size)
 | |
| 	}
 | |
| 	if l := len(s.Values()); 100 != l {
 | |
| 		t.Errorf("len(s.Values()): 100 != %v\n", l)
 | |
| 	}
 | |
| 	for _, v := range s.Values() {
 | |
| 		if v > 1000 || v < 0 {
 | |
| 			t.Errorf("out of range [0, 1000): %v\n", v)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // This test makes sure that the sample's priority is not amplified by using
 | |
| // nanosecond duration since start rather than second duration since start.
 | |
| // The priority becomes +Inf quickly after starting if this is done,
 | |
| // effectively freezing the set of samples until a rescale step happens.
 | |
| func TestExpDecaySampleNanosecondRegression(t *testing.T) {
 | |
| 	rand.Seed(1)
 | |
| 	s := NewExpDecaySample(100, 0.99)
 | |
| 	for i := 0; i < 100; i++ {
 | |
| 		s.Update(10)
 | |
| 	}
 | |
| 	time.Sleep(1 * time.Millisecond)
 | |
| 	for i := 0; i < 100; i++ {
 | |
| 		s.Update(20)
 | |
| 	}
 | |
| 	v := s.Values()
 | |
| 	avg := float64(0)
 | |
| 	for i := 0; i < len(v); i++ {
 | |
| 		avg += float64(v[i])
 | |
| 	}
 | |
| 	avg /= float64(len(v))
 | |
| 	if avg > 16 || avg < 14 {
 | |
| 		t.Errorf("out of range [14, 16]: %v\n", avg)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestExpDecaySampleRescale(t *testing.T) {
 | |
| 	s := NewExpDecaySample(2, 0.001).(*ExpDecaySample)
 | |
| 	s.update(time.Now(), 1)
 | |
| 	s.update(time.Now().Add(time.Hour+time.Microsecond), 1)
 | |
| 	for _, v := range s.values.Values() {
 | |
| 		if v.k == 0.0 {
 | |
| 			t.Fatal("v.k == 0.0")
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestExpDecaySampleSnapshot(t *testing.T) {
 | |
| 	now := time.Now()
 | |
| 	rand.Seed(1)
 | |
| 	s := NewExpDecaySample(100, 0.99)
 | |
| 	for i := 1; i <= 10000; i++ {
 | |
| 		s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
 | |
| 	}
 | |
| 	snapshot := s.Snapshot()
 | |
| 	s.Update(1)
 | |
| 	testExpDecaySampleStatistics(t, snapshot)
 | |
| }
 | |
| 
 | |
| func TestExpDecaySampleStatistics(t *testing.T) {
 | |
| 	now := time.Now()
 | |
| 	rand.Seed(1)
 | |
| 	s := NewExpDecaySample(100, 0.99)
 | |
| 	for i := 1; i <= 10000; i++ {
 | |
| 		s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
 | |
| 	}
 | |
| 	testExpDecaySampleStatistics(t, s)
 | |
| }
 | |
| 
 | |
| func TestUniformSample(t *testing.T) {
 | |
| 	rand.Seed(1)
 | |
| 	s := NewUniformSample(100)
 | |
| 	for i := 0; i < 1000; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	if size := s.Count(); 1000 != size {
 | |
| 		t.Errorf("s.Count(): 1000 != %v\n", size)
 | |
| 	}
 | |
| 	if size := s.Size(); 100 != size {
 | |
| 		t.Errorf("s.Size(): 100 != %v\n", size)
 | |
| 	}
 | |
| 	if l := len(s.Values()); 100 != l {
 | |
| 		t.Errorf("len(s.Values()): 100 != %v\n", l)
 | |
| 	}
 | |
| 	for _, v := range s.Values() {
 | |
| 		if v > 1000 || v < 0 {
 | |
| 			t.Errorf("out of range [0, 100): %v\n", v)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestUniformSampleIncludesTail(t *testing.T) {
 | |
| 	rand.Seed(1)
 | |
| 	s := NewUniformSample(100)
 | |
| 	max := 100
 | |
| 	for i := 0; i < max; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	v := s.Values()
 | |
| 	sum := 0
 | |
| 	exp := (max - 1) * max / 2
 | |
| 	for i := 0; i < len(v); i++ {
 | |
| 		sum += int(v[i])
 | |
| 	}
 | |
| 	if exp != sum {
 | |
| 		t.Errorf("sum: %v != %v\n", exp, sum)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestUniformSampleSnapshot(t *testing.T) {
 | |
| 	s := NewUniformSample(100)
 | |
| 	for i := 1; i <= 10000; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	snapshot := s.Snapshot()
 | |
| 	s.Update(1)
 | |
| 	testUniformSampleStatistics(t, snapshot)
 | |
| }
 | |
| 
 | |
| func TestUniformSampleStatistics(t *testing.T) {
 | |
| 	rand.Seed(1)
 | |
| 	s := NewUniformSample(100)
 | |
| 	for i := 1; i <= 10000; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	testUniformSampleStatistics(t, s)
 | |
| }
 | |
| 
 | |
| func benchmarkSample(b *testing.B, s Sample) {
 | |
| 	var memStats runtime.MemStats
 | |
| 	runtime.ReadMemStats(&memStats)
 | |
| 	pauseTotalNs := memStats.PauseTotalNs
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		s.Update(1)
 | |
| 	}
 | |
| 	b.StopTimer()
 | |
| 	runtime.GC()
 | |
| 	runtime.ReadMemStats(&memStats)
 | |
| 	b.Logf("GC cost: %d ns/op", int(memStats.PauseTotalNs-pauseTotalNs)/b.N)
 | |
| }
 | |
| 
 | |
| func testExpDecaySampleStatistics(t *testing.T, s Sample) {
 | |
| 	if count := s.Count(); 10000 != count {
 | |
| 		t.Errorf("s.Count(): 10000 != %v\n", count)
 | |
| 	}
 | |
| 	if min := s.Min(); 107 != min {
 | |
| 		t.Errorf("s.Min(): 107 != %v\n", min)
 | |
| 	}
 | |
| 	if max := s.Max(); 10000 != max {
 | |
| 		t.Errorf("s.Max(): 10000 != %v\n", max)
 | |
| 	}
 | |
| 	if mean := s.Mean(); 4965.98 != mean {
 | |
| 		t.Errorf("s.Mean(): 4965.98 != %v\n", mean)
 | |
| 	}
 | |
| 	if stdDev := s.StdDev(); 2959.825156930727 != stdDev {
 | |
| 		t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev)
 | |
| 	}
 | |
| 	ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
 | |
| 	if 4615 != ps[0] {
 | |
| 		t.Errorf("median: 4615 != %v\n", ps[0])
 | |
| 	}
 | |
| 	if 7672 != ps[1] {
 | |
| 		t.Errorf("75th percentile: 7672 != %v\n", ps[1])
 | |
| 	}
 | |
| 	if 9998.99 != ps[2] {
 | |
| 		t.Errorf("99th percentile: 9998.99 != %v\n", ps[2])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func testUniformSampleStatistics(t *testing.T, s Sample) {
 | |
| 	if count := s.Count(); 10000 != count {
 | |
| 		t.Errorf("s.Count(): 10000 != %v\n", count)
 | |
| 	}
 | |
| 	if min := s.Min(); 37 != min {
 | |
| 		t.Errorf("s.Min(): 37 != %v\n", min)
 | |
| 	}
 | |
| 	if max := s.Max(); 9989 != max {
 | |
| 		t.Errorf("s.Max(): 9989 != %v\n", max)
 | |
| 	}
 | |
| 	if mean := s.Mean(); 4748.14 != mean {
 | |
| 		t.Errorf("s.Mean(): 4748.14 != %v\n", mean)
 | |
| 	}
 | |
| 	if stdDev := s.StdDev(); 2826.684117548333 != stdDev {
 | |
| 		t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev)
 | |
| 	}
 | |
| 	ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
 | |
| 	if 4599 != ps[0] {
 | |
| 		t.Errorf("median: 4599 != %v\n", ps[0])
 | |
| 	}
 | |
| 	if 7380.5 != ps[1] {
 | |
| 		t.Errorf("75th percentile: 7380.5 != %v\n", ps[1])
 | |
| 	}
 | |
| 	if 9986.429999999998 != ps[2] {
 | |
| 		t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestUniformSampleConcurrentUpdateCount would expose data race problems with
 | |
| // concurrent Update and Count calls on Sample when test is called with -race
 | |
| // argument
 | |
| func TestUniformSampleConcurrentUpdateCount(t *testing.T) {
 | |
| 	if testing.Short() {
 | |
| 		t.Skip("skipping in short mode")
 | |
| 	}
 | |
| 	s := NewUniformSample(100)
 | |
| 	for i := 0; i < 100; i++ {
 | |
| 		s.Update(int64(i))
 | |
| 	}
 | |
| 	quit := make(chan struct{})
 | |
| 	go func() {
 | |
| 		t := time.NewTicker(10 * time.Millisecond)
 | |
| 		for {
 | |
| 			select {
 | |
| 			case <-t.C:
 | |
| 				s.Update(rand.Int63())
 | |
| 			case <-quit:
 | |
| 				t.Stop()
 | |
| 				return
 | |
| 			}
 | |
| 		}
 | |
| 	}()
 | |
| 	for i := 0; i < 1000; i++ {
 | |
| 		s.Count()
 | |
| 		time.Sleep(5 * time.Millisecond)
 | |
| 	}
 | |
| 	quit <- struct{}{}
 | |
| }
 |