2015-07-29 08:22:14 +08:00
|
|
|
# Licensed to the Apache Software Foundation (ASF) under one or more
|
|
|
|
# contributor license agreements. See the NOTICE file distributed with
|
|
|
|
# this work for additional information regarding copyright ownership.
|
|
|
|
# The ASF licenses this file to You under the Apache License, Version 2.0
|
|
|
|
# (the "License"); you may not use this file except in compliance with
|
|
|
|
# the License. You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from ducktape.services.background_thread import BackgroundThreadService
|
|
|
|
|
|
|
|
|
|
|
|
class PerformanceService(BackgroundThreadService):
|
|
|
|
def __init__(self, context, num_nodes):
|
|
|
|
super(PerformanceService, self).__init__(context, num_nodes)
|
|
|
|
self.results = [None] * self.num_nodes
|
|
|
|
self.stats = [[] for x in range(self.num_nodes)]
|
|
|
|
|
|
|
|
|
|
|
|
class ProducerPerformanceService(PerformanceService):
|
|
|
|
def __init__(self, context, num_nodes, kafka, topic, num_records, record_size, throughput, settings={}, intermediate_stats=False):
|
|
|
|
super(ProducerPerformanceService, self).__init__(context, num_nodes)
|
|
|
|
self.kafka = kafka
|
|
|
|
self.args = {
|
|
|
|
'topic': topic,
|
|
|
|
'num_records': num_records,
|
|
|
|
'record_size': record_size,
|
|
|
|
'throughput': throughput
|
|
|
|
}
|
|
|
|
self.settings = settings
|
|
|
|
self.intermediate_stats = intermediate_stats
|
|
|
|
|
|
|
|
def _worker(self, idx, node):
|
|
|
|
args = self.args.copy()
|
|
|
|
args.update({'bootstrap_servers': self.kafka.bootstrap_servers()})
|
|
|
|
cmd = "/opt/kafka/bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance "\
|
|
|
|
"%(topic)s %(num_records)d %(record_size)d %(throughput)d bootstrap.servers=%(bootstrap_servers)s" % args
|
|
|
|
|
|
|
|
for key,value in self.settings.items():
|
|
|
|
cmd += " %s=%s" % (str(key), str(value))
|
|
|
|
self.logger.debug("Producer performance %d command: %s", idx, cmd)
|
|
|
|
|
|
|
|
def parse_stats(line):
|
|
|
|
parts = line.split(',')
|
|
|
|
return {
|
|
|
|
'records': int(parts[0].split()[0]),
|
|
|
|
'records_per_sec': float(parts[1].split()[0]),
|
|
|
|
'mbps': float(parts[1].split('(')[1].split()[0]),
|
|
|
|
'latency_avg_ms': float(parts[2].split()[0]),
|
|
|
|
'latency_max_ms': float(parts[3].split()[0]),
|
|
|
|
'latency_50th_ms': float(parts[4].split()[0]),
|
|
|
|
'latency_95th_ms': float(parts[5].split()[0]),
|
|
|
|
'latency_99th_ms': float(parts[6].split()[0]),
|
|
|
|
'latency_999th_ms': float(parts[7].split()[0]),
|
|
|
|
}
|
|
|
|
last = None
|
|
|
|
for line in node.account.ssh_capture(cmd):
|
|
|
|
self.logger.debug("Producer performance %d: %s", idx, line.strip())
|
|
|
|
if self.intermediate_stats:
|
|
|
|
try:
|
|
|
|
self.stats[idx-1].append(parse_stats(line))
|
|
|
|
except:
|
|
|
|
# Sometimes there are extraneous log messages
|
|
|
|
pass
|
|
|
|
last = line
|
|
|
|
try:
|
|
|
|
self.results[idx-1] = parse_stats(last)
|
|
|
|
except:
|
|
|
|
self.logger.error("Bad last line: %s", last)
|
|
|
|
|
|
|
|
|
|
|
|
class ConsumerPerformanceService(PerformanceService):
|
|
|
|
def __init__(self, context, num_nodes, kafka, topic, num_records, throughput, threads=1, settings={}):
|
|
|
|
super(ConsumerPerformanceService, self).__init__(context, num_nodes)
|
|
|
|
self.kafka = kafka
|
|
|
|
self.args = {
|
|
|
|
'topic': topic,
|
|
|
|
'num_records': num_records,
|
|
|
|
'throughput': throughput,
|
|
|
|
'threads': threads,
|
|
|
|
}
|
|
|
|
self.settings = settings
|
|
|
|
|
|
|
|
def _worker(self, idx, node):
|
|
|
|
args = self.args.copy()
|
|
|
|
args.update({'zk_connect': self.kafka.zk.connect_setting()})
|
|
|
|
cmd = "/opt/kafka/bin/kafka-consumer-perf-test.sh "\
|
|
|
|
"--topic %(topic)s --messages %(num_records)d --zookeeper %(zk_connect)s" % args
|
|
|
|
for key,value in self.settings.items():
|
|
|
|
cmd += " %s=%s" % (str(key), str(value))
|
|
|
|
self.logger.debug("Consumer performance %d command: %s", idx, cmd)
|
|
|
|
last = None
|
|
|
|
for line in node.account.ssh_capture(cmd):
|
|
|
|
self.logger.debug("Consumer performance %d: %s", idx, line.strip())
|
|
|
|
last = line
|
|
|
|
# Parse and save the last line's information
|
|
|
|
parts = last.split(',')
|
|
|
|
|
|
|
|
self.results[idx-1] = {
|
|
|
|
'total_mb': float(parts[2]),
|
|
|
|
'mbps': float(parts[3]),
|
|
|
|
'records_per_sec': float(parts[5]),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class EndToEndLatencyService(PerformanceService):
|
|
|
|
def __init__(self, context, num_nodes, kafka, topic, num_records, consumer_fetch_max_wait=100, acks=1):
|
|
|
|
super(EndToEndLatencyService, self).__init__(context, num_nodes)
|
|
|
|
self.kafka = kafka
|
|
|
|
self.args = {
|
|
|
|
'topic': topic,
|
|
|
|
'num_records': num_records,
|
|
|
|
'consumer_fetch_max_wait': consumer_fetch_max_wait,
|
|
|
|
'acks': acks
|
|
|
|
}
|
|
|
|
|
|
|
|
def _worker(self, idx, node):
|
|
|
|
args = self.args.copy()
|
|
|
|
args.update({
|
|
|
|
'zk_connect': self.kafka.zk.connect_setting(),
|
|
|
|
'bootstrap_servers': self.kafka.bootstrap_servers(),
|
|
|
|
})
|
|
|
|
cmd = "/opt/kafka/bin/kafka-run-class.sh kafka.tools.EndToEndLatency "\
|
2015-09-09 06:15:51 +08:00
|
|
|
"%(bootstrap_servers)s %(topic)s %(num_records)d "\
|
|
|
|
"%(acks)d 20" % args
|
2015-07-29 08:22:14 +08:00
|
|
|
self.logger.debug("End-to-end latency %d command: %s", idx, cmd)
|
|
|
|
results = {}
|
|
|
|
for line in node.account.ssh_capture(cmd):
|
|
|
|
self.logger.debug("End-to-end latency %d: %s", idx, line.strip())
|
|
|
|
if line.startswith("Avg latency:"):
|
|
|
|
results['latency_avg_ms'] = float(line.split()[2])
|
|
|
|
if line.startswith("Percentiles"):
|
|
|
|
results['latency_50th_ms'] = float(line.split()[3][:-1])
|
|
|
|
results['latency_99th_ms'] = float(line.split()[6][:-1])
|
|
|
|
results['latency_999th_ms'] = float(line.split()[9])
|
|
|
|
self.results[idx-1] = results
|
|
|
|
|
|
|
|
|
|
|
|
def parse_performance_output(summary):
|
|
|
|
parts = summary.split(',')
|
|
|
|
results = {
|
|
|
|
'records': int(parts[0].split()[0]),
|
|
|
|
'records_per_sec': float(parts[1].split()[0]),
|
|
|
|
'mbps': float(parts[1].split('(')[1].split()[0]),
|
|
|
|
'latency_avg_ms': float(parts[2].split()[0]),
|
|
|
|
'latency_max_ms': float(parts[3].split()[0]),
|
|
|
|
'latency_50th_ms': float(parts[4].split()[0]),
|
|
|
|
'latency_95th_ms': float(parts[5].split()[0]),
|
|
|
|
'latency_99th_ms': float(parts[6].split()[0]),
|
|
|
|
'latency_999th_ms': float(parts[7].split()[0]),
|
|
|
|
}
|
|
|
|
# To provide compatibility with ConsumerPerformanceService
|
|
|
|
results['total_mb'] = results['mbps'] * (results['records'] / results['records_per_sec'])
|
|
|
|
results['rate_mbps'] = results['mbps']
|
|
|
|
results['rate_mps'] = results['records_per_sec']
|
|
|
|
|
|
|
|
return results
|