MINOR: Add InterfaceStability.Unstable annotations to some Kafka Streams public APIs

Also improves Java docs for the Streams high-level DSL.

Author: Guozhang Wang <wangguoz@gmail.com>

Reviewers: Ismael Juma, Michael G. Noll

Closes #1097 from guozhangwang/KNewJavaDoc
This commit is contained in:
Guozhang Wang 2016-03-21 12:06:07 -07:00
parent 702d560c55
commit b6c29e3810
19 changed files with 303 additions and 285 deletions

View File

@ -20,9 +20,9 @@ package org.apache.kafka.streams.kstream;
/** /**
* The Aggregator interface for aggregating values of the given key. * The Aggregator interface for aggregating values of the given key.
* *
* @param <K> Key type. * @param <K> key type
* @param <V> Receiving value type. * @param <V> original value type
* @param <T> Aggregate value type. * @param <T> aggregate value type
*/ */
public interface Aggregator<K, V, T> { public interface Aggregator<K, V, T> {

View File

@ -18,9 +18,9 @@
package org.apache.kafka.streams.kstream; package org.apache.kafka.streams.kstream;
/** /**
* The Initializer interface for creating an initial value for aggregations. * The Initializer interface for creating an initial value in aggregations.
* *
* @param <T> Aggregate value type. * @param <T> aggregate value type
*/ */
public interface Initializer<T> { public interface Initializer<T> {

View File

@ -45,8 +45,7 @@ public class JoinWindows extends Windows<TumblingWindow> {
* Specifies that records of the same key are joinable if their timestamp stamps are within * Specifies that records of the same key are joinable if their timestamp stamps are within
* timeDifference. * timeDifference.
* *
* @param timeDifference * @param timeDifference join window interval in milliseconds
* @return
*/ */
public JoinWindows within(long timeDifference) { public JoinWindows within(long timeDifference) {
return new JoinWindows(this.name, timeDifference, timeDifference); return new JoinWindows(this.name, timeDifference, timeDifference);
@ -54,11 +53,10 @@ public class JoinWindows extends Windows<TumblingWindow> {
/** /**
* Specifies that records of the same key are joinable if their timestamp stamps are within * Specifies that records of the same key are joinable if their timestamp stamps are within
* timeDifference, and if the timestamp of a record from the secondary stream is * the join window interval, and if the timestamp of a record from the secondary stream is
* is earlier than or equal to the timestamp of a record from the first stream. * earlier than or equal to the timestamp of a record from the first stream.
* *
* @param timeDifference * @param timeDifference join window interval in milliseconds
* @return
*/ */
public JoinWindows before(long timeDifference) { public JoinWindows before(long timeDifference) {
return new JoinWindows(this.name, timeDifference, this.after); return new JoinWindows(this.name, timeDifference, this.after);
@ -66,11 +64,10 @@ public class JoinWindows extends Windows<TumblingWindow> {
/** /**
* Specifies that records of the same key are joinable if their timestamp stamps are within * Specifies that records of the same key are joinable if their timestamp stamps are within
* timeDifference, and if the timestamp of a record from the secondary stream is * the join window interval, and if the timestamp of a record from the secondary stream
* is later than or equal to the timestamp of a record from the first stream. * is later than or equal to the timestamp of a record from the first stream.
* *
* @param timeDifference * @param timeDifference join window interval in milliseconds
* @return
*/ */
public JoinWindows after(long timeDifference) { public JoinWindows after(long timeDifference) {
return new JoinWindows(this.name, this.before, timeDifference); return new JoinWindows(this.name, this.before, timeDifference);

View File

@ -17,116 +17,110 @@
package org.apache.kafka.streams.kstream; package org.apache.kafka.streams.kstream;
import org.apache.kafka.common.annotation.InterfaceStability;
import org.apache.kafka.common.serialization.Serde; import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.streams.KeyValue; import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.processor.ProcessorSupplier; import org.apache.kafka.streams.processor.ProcessorSupplier;
/** /**
* KStream is an abstraction of an event stream in key-value pairs. * KStream is an abstraction of a <i>record stream</i> of key-value pairs.
* *
* @param <K> Type of keys * @param <K> Type of keys
* @param <V> Type of values * @param <V> Type of values
*/ */
@InterfaceStability.Unstable
public interface KStream<K, V> { public interface KStream<K, V> {
/** /**
* Creates a new instance of KStream consists of all elements of this stream which satisfy a predicate * Create a new instance of {@link KStream} that consists of all elements of this stream which satisfy a predicate.
* *
* @param predicate the instance of Predicate * @param predicate the instance of {@link Predicate}
* @return the instance of KStream with only those elements that satisfy the predicate
*/ */
KStream<K, V> filter(Predicate<K, V> predicate); KStream<K, V> filter(Predicate<K, V> predicate);
/** /**
* Creates a new instance of KStream consists all elements of this stream which do not satisfy a predicate * Create a new instance of {@link KStream} that consists all elements of this stream which do not satisfy a predicate.
* *
* @param predicate the instance of Predicate * @param predicate the instance of {@link Predicate}
* @return the instance of KStream with only those elements that do not satisfy the predicate
*/ */
KStream<K, V> filterOut(Predicate<K, V> predicate); KStream<K, V> filterOut(Predicate<K, V> predicate);
/** /**
* Creates a new instance of KStream by applying transforming each element in this stream into a different element in the new stream. * Create a new instance of {@link KStream} by transforming each element in this stream into a different element in the new stream.
* *
* @param mapper the instance of KeyValueMapper * @param mapper the instance of {@link KeyValueMapper}
* @param <K1> the key type of the new stream * @param <K1> the key type of the new stream
* @param <V1> the value type of the new stream * @param <V1> the value type of the new stream
* @return the instance of KStream
*/ */
<K1, V1> KStream<K1, V1> map(KeyValueMapper<K, V, KeyValue<K1, V1>> mapper); <K1, V1> KStream<K1, V1> map(KeyValueMapper<K, V, KeyValue<K1, V1>> mapper);
/** /**
* Creates a new instance of KStream by transforming each value in this stream into a different value in the new stream. * Create a new instance of {@link KStream} by transforming the value of each element in this stream into a new value in the new stream.
* *
* @param mapper the instance of ValueMapper * @param mapper the instance of {@link ValueMapper}
* @param <V1> the value type of the new stream * @param <V1> the value type of the new stream
* @return the instance of KStream
*/ */
<V1> KStream<K, V1> mapValues(ValueMapper<V, V1> mapper); <V1> KStream<K, V1> mapValues(ValueMapper<V, V1> mapper);
/** /**
* Creates a new instance of KStream by transforming each element in this stream into zero or more elements in the new stream. * Create a new instance of {@link KStream} by transforming each element in this stream into zero or more elements in the new stream.
* *
* @param mapper the instance of KeyValueMapper * @param mapper the instance of {@link KeyValueMapper}
* @param <K1> the key type of the new stream * @param <K1> the key type of the new stream
* @param <V1> the value type of the new stream * @param <V1> the value type of the new stream
* @return the instance of KStream
*/ */
<K1, V1> KStream<K1, V1> flatMap(KeyValueMapper<K, V, Iterable<KeyValue<K1, V1>>> mapper); <K1, V1> KStream<K1, V1> flatMap(KeyValueMapper<K, V, Iterable<KeyValue<K1, V1>>> mapper);
/** /**
* Creates a new stream by transforming each value in this stream into zero or more values in the new stream. * Create a new instance of {@link KStream} by transforming the value of each element in this stream into zero or more values with the same key in the new stream.
* *
* @param processor the instance of Processor * @param processor the instance of {@link ValueMapper}
* @param <V1> the value type of the new stream * @param <V1> the value type of the new stream
* @return the instance of KStream
*/ */
<V1> KStream<K, V1> flatMapValues(ValueMapper<V, Iterable<V1>> processor); <V1> KStream<K, V1> flatMapValues(ValueMapper<V, Iterable<V1>> processor);
/** /**
* Creates an array of streams from this stream. Each stream in the array corresponds to a predicate in * Creates an array of {@link KStream} from this stream by branching the elements in the original stream based on the supplied predicates.
* supplied predicates in the same order. Predicates are evaluated in order. An element is streamed to * Each element is evaluated against the supplied predicates, and predicates are evaluated in order. Each stream in the result array
* a corresponding stream for the first predicate is evaluated true. * corresponds position-wise (index) to the predicate in the supplied predicates. The branching happens on first-match: An element
* An element will be dropped if none of the predicates evaluate true. * in the original stream is assigned to the corresponding result stream for the first predicate that evaluates to true, and
* assigned to this stream only. An element will be dropped if none of the predicates evaluate to true.
* *
* @param predicates the ordered list of Predicate instances * @param predicates the ordered list of {@link Predicate} instances
* @return the instances of KStream that each contain those elements for which their Predicate evaluated to true.
*/ */
KStream<K, V>[] branch(Predicate<K, V>... predicates); KStream<K, V>[] branch(Predicate<K, V>... predicates);
/** /**
* Sends key-value to a topic, also creates a new instance of KStream from the topic. * Materialize this stream to a topic, also creates a new instance of {@link KStream} from the topic
* This is equivalent to calling to(topic) and from(topic). * using default serializers and deserializers.
* This is equivalent to calling {@link #to(String)} and {@link org.apache.kafka.streams.kstream.KStreamBuilder#stream(String...)}.
* *
* @param topic the topic name * @param topic the topic name
*
* @return the instance of {@link KStream} that consumes the given topic
*/ */
KStream<K, V> through(String topic); KStream<K, V> through(String topic);
/** /**
* Sends key-value to a topic, also creates a new instance of KStream from the topic. * Materialize this stream to a topic, also creates a new instance of {@link KStream} from the topic.
* This is equivalent to calling to(topic) and from(topic). * This is equivalent to calling {@link #to(Serde, Serde, String)} and
* {@link org.apache.kafka.streams.kstream.KStreamBuilder#stream(Serde, Serde, String...)}.
* *
* @param keySerde key serde used to send key-value pairs, * @param keySerde key serde used to send key-value pairs,
* if not specified the default key serde defined in the configuration will be used * if not specified the default key serde defined in the configuration will be used
* @param valSerde value serde used to send key-value pairs, * @param valSerde value serde used to send key-value pairs,
* if not specified the default value serde defined in the configuration will be used * if not specified the default value serde defined in the configuration will be used
* @param topic the topic name * @param topic the topic name
*
* @return the instance of {@link KStream} that consumes the given topic
*/ */
KStream<K, V> through(Serde<K> keySerde, Serde<V> valSerde, String topic); KStream<K, V> through(Serde<K> keySerde, Serde<V> valSerde, String topic);
/** /**
* Sends key-value to a topic using default serializers specified in the config. * Materialize this stream to a topic using default serializers specified in the config.
* *
* @param topic the topic name * @param topic the topic name
*/ */
void to(String topic); void to(String topic);
/** /**
* Sends key-value to a topic. * Materialize this stream to a topic.
* *
* @param keySerde key serde used to send key-value pairs, * @param keySerde key serde used to send key-value pairs,
* if not specified the default serde defined in the configs will be used * if not specified the default serde defined in the configs will be used
@ -137,42 +131,40 @@ public interface KStream<K, V> {
void to(Serde<K> keySerde, Serde<V> valSerde, String topic); void to(Serde<K> keySerde, Serde<V> valSerde, String topic);
/** /**
* Applies a stateful transformation to all elements in this stream. * Create a new {@link KStream} instance by applying a {@link org.apache.kafka.streams.kstream.Transformer} to all elements in this stream, one element at a time.
* *
* @param transformerSupplier the class of valueTransformerSupplier * @param transformerSupplier the instance of {@link TransformerSupplier} that generates {@link org.apache.kafka.streams.kstream.Transformer}
* @param stateStoreNames the names of the state store used by the processor * @param stateStoreNames the names of the state store used by the processor
* @return the instance of KStream that contains transformed keys and values
*/ */
<K1, V1> KStream<K1, V1> transform(TransformerSupplier<K, V, KeyValue<K1, V1>> transformerSupplier, String... stateStoreNames); <K1, V1> KStream<K1, V1> transform(TransformerSupplier<K, V, KeyValue<K1, V1>> transformerSupplier, String... stateStoreNames);
/** /**
* Applies a stateful transformation to all values in this stream. * Create a new {@link KStream} instance by applying a {@link org.apache.kafka.streams.kstream.ValueTransformer} to all values in this stream, one element at a time.
* *
* @param valueTransformerSupplier the class of valueTransformerSupplier * @param valueTransformerSupplier the instance of {@link ValueTransformerSupplier} that generates {@link org.apache.kafka.streams.kstream.ValueTransformer}
* @param stateStoreNames the names of the state store used by the processor * @param stateStoreNames the names of the state store used by the processor
* @return the instance of KStream that contains the keys and transformed values
*/ */
<R> KStream<K, R> transformValues(ValueTransformerSupplier<V, R> valueTransformerSupplier, String... stateStoreNames); <R> KStream<K, R> transformValues(ValueTransformerSupplier<V, R> valueTransformerSupplier, String... stateStoreNames);
/** /**
* Processes all elements in this stream by applying a processor. * Process all elements in this stream, one element at a time, by applying a {@link org.apache.kafka.streams.processor.Processor}.
* *
* @param processorSupplier the supplier of the Processor to use * @param processorSupplier the supplier of {@link ProcessorSupplier} that generates {@link org.apache.kafka.streams.processor.Processor}
* @param stateStoreNames the names of the state store used by the processor * @param stateStoreNames the names of the state store used by the processor
*/ */
void process(ProcessorSupplier<K, V> processorSupplier, String... stateStoreNames); void process(ProcessorSupplier<K, V> processorSupplier, String... stateStoreNames);
/** /**
* Combines values of this stream with another KStream using Windowed Inner Join. * Combine element values of this stream with another {@link KStream}'s elements of the same key using windowed Inner Join.
* *
* @param otherStream the instance of KStream joined with this stream * @param otherStream the instance of {@link KStream} joined with this stream
* @param joiner ValueJoiner * @param joiner the instance of {@link ValueJoiner}
* @param windows the specification of the join window * @param windows the specification of the {@link JoinWindows}
* @param keySerde key serdes, * @param keySerde key serdes for materializing both streams,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param thisValueSerde value serdes for this stream, * @param thisValueSerde value serdes for materializing this stream,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param otherValueSerde value serdes for other stream, * @param otherValueSerde value serdes for materializing the other stream,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param <V1> the value type of the other stream * @param <V1> the value type of the other stream
* @param <R> the value type of the new stream * @param <R> the value type of the new stream
@ -186,7 +178,8 @@ public interface KStream<K, V> {
Serde<V1> otherValueSerde); Serde<V1> otherValueSerde);
/** /**
* Combines values of this stream with another KStream using Windowed Inner Join. * Combine element values of this stream with another {@link KStream}'s elements of the same key using windowed Inner Join
* with default serializers and deserializers.
* *
* @param otherStream the instance of {@link KStream} joined with this stream * @param otherStream the instance of {@link KStream} joined with this stream
* @param joiner the instance of {@link ValueJoiner} * @param joiner the instance of {@link ValueJoiner}
@ -200,16 +193,16 @@ public interface KStream<K, V> {
JoinWindows windows); JoinWindows windows);
/** /**
* Combines values of this stream with another KStream using Windowed Outer Join. * Combine values of this stream with another {@link KStream}'s elements of the same key using windowed Outer Join.
* *
* @param otherStream the instance of KStream joined with this stream * @param otherStream the instance of {@link KStream} joined with this stream
* @param joiner ValueJoiner * @param joiner the instance of {@link ValueJoiner}
* @param windows the specification of the join window * @param windows the specification of the {@link JoinWindows}
* @param keySerde key serdes, * @param keySerde key serdes for materializing both streams,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param thisValueSerde value serdes for this stream, * @param thisValueSerde value serdes for materializing this stream,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param otherValueSerde value serdes for other stream, * @param otherValueSerde value serdes for materializing the other stream,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param <V1> the value type of the other stream * @param <V1> the value type of the other stream
* @param <R> the value type of the new stream * @param <R> the value type of the new stream
@ -223,7 +216,8 @@ public interface KStream<K, V> {
Serde<V1> otherValueSerde); Serde<V1> otherValueSerde);
/** /**
* Combines values of this stream with another KStream using Windowed Outer Join. * Combine values of this stream with another {@link KStream}'s elements of the same key using windowed Outer Join
* with default serializers and deserializers.
* *
* @param otherStream the instance of {@link KStream} joined with this stream * @param otherStream the instance of {@link KStream} joined with this stream
* @param joiner the instance of {@link ValueJoiner} * @param joiner the instance of {@link ValueJoiner}
@ -237,14 +231,14 @@ public interface KStream<K, V> {
JoinWindows windows); JoinWindows windows);
/** /**
* Combines values of this stream with another KStream using Windowed Left Join. * Combine values of this stream with another {@link KStream}'s elements of the same key using windowed Left Join.
* *
* @param otherStream the instance of KStream joined with this stream * @param otherStream the instance of {@link KStream} joined with this stream
* @param joiner ValueJoiner * @param joiner the instance of {@link ValueJoiner}
* @param windows the specification of the join window * @param windows the specification of the {@link JoinWindows}
* @param keySerde key serdes, * @param keySerde key serdes for materializing the other stream,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param otherValueSerde value serdes for other stream, * @param otherValueSerde value serdes for materializing the other stream,
* if not specified the default serdes defined in the configs will be used * if not specified the default serdes defined in the configs will be used
* @param <V1> the value type of the other stream * @param <V1> the value type of the other stream
* @param <R> the value type of the new stream * @param <R> the value type of the new stream
@ -257,7 +251,8 @@ public interface KStream<K, V> {
Serde<V1> otherValueSerde); Serde<V1> otherValueSerde);
/** /**
* Combines values of this stream with another KStream using Windowed Left Join. * Combine values of this stream with another {@link KStream}'s elements of the same key using windowed Left Join
* with default serializers and deserializers.
* *
* @param otherStream the instance of {@link KStream} joined with this stream * @param otherStream the instance of {@link KStream} joined with this stream
* @param joiner the instance of {@link ValueJoiner} * @param joiner the instance of {@link ValueJoiner}
@ -271,7 +266,7 @@ public interface KStream<K, V> {
JoinWindows windows); JoinWindows windows);
/** /**
* Combines values of this stream with KTable using Left Join. * Combine values of this stream with {@link KTable}'s elements of the same key using non-windowed Left Join.
* *
* @param table the instance of {@link KTable} joined with this stream * @param table the instance of {@link KTable} joined with this stream
* @param joiner the instance of {@link ValueJoiner} * @param joiner the instance of {@link ValueJoiner}
@ -281,48 +276,63 @@ public interface KStream<K, V> {
<V1, V2> KStream<K, V2> leftJoin(KTable<K, V1> table, ValueJoiner<V, V1, V2> joiner); <V1, V2> KStream<K, V2> leftJoin(KTable<K, V1> table, ValueJoiner<V, V1, V2> joiner);
/** /**
* Aggregate values of this stream by key on a window basis. * Combine values of this stream by key on a window basis into a new instance of windowed {@link KTable}.
* *
* @param reducer the class of {@link Reducer} * @param reducer the instance of {@link Reducer}
* @param windows the specification of the aggregation {@link Windows} * @param windows the specification of the aggregation {@link Windows}
* @param keySerde key serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param valueSerde value serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
*/ */
<W extends Window> KTable<Windowed<K>, V> reduceByKey(Reducer<V> reducer, <W extends Window> KTable<Windowed<K>, V> reduceByKey(Reducer<V> reducer,
Windows<W> windows, Windows<W> windows,
Serde<K> keySerde, Serde<K> keySerde,
Serde<V> aggValueSerde); Serde<V> valueSerde);
/** /**
* Aggregate values of this stream by key on a window basis. * Combine values of this stream by key on a window basis into a new instance of windowed {@link KTable}
* with default serializers and deserializers.
* *
* @param reducer the class of {@link Reducer} * @param reducer the instance of {@link Reducer}
* @param windows the specification of the aggregation {@link Windows} * @param windows the specification of the aggregation {@link Windows}
*/ */
<W extends Window> KTable<Windowed<K>, V> reduceByKey(Reducer<V> reducer, Windows<W> windows); <W extends Window> KTable<Windowed<K>, V> reduceByKey(Reducer<V> reducer, Windows<W> windows);
/** /**
* Aggregate values of this stream by key on a window basis. * Combine values of this stream by key into a new instance of ever-updating {@link KTable}.
* *
* @param reducer the class of Reducer * @param reducer the instance of {@link Reducer}
* @param keySerde key serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param valueSerde value serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param name the name of the resulted {@link KTable}
*/ */
KTable<K, V> reduceByKey(Reducer<V> reducer, KTable<K, V> reduceByKey(Reducer<V> reducer,
Serde<K> keySerde, Serde<K> keySerde,
Serde<V> aggValueSerde, Serde<V> valueSerde,
String name); String name);
/** /**
* Aggregate values of this stream by key on a window basis. * Combine values of this stream by key into a new instance of ever-updating {@link KTable} with default serializers and deserializers.
* *
* @param reducer the class of {@link Reducer} * @param reducer the instance of {@link Reducer}
* @param name the name of the resulted {@link KTable}
*/ */
KTable<K, V> reduceByKey(Reducer<V> reducer, String name); KTable<K, V> reduceByKey(Reducer<V> reducer, String name);
/** /**
* Aggregate values of this stream by key on a window basis. * Aggregate values of this stream by key on a window basis into a new instance of windowed {@link KTable}.
* *
* @param initializer the class of Initializer * @param initializer the instance of {@link Initializer}
* @param aggregator the class of Aggregator * @param aggregator the instance of {@link Aggregator}
* @param windows the specification of the aggregation {@link Windows} * @param windows the specification of the aggregation {@link Windows}
* @param <T> the value type of the aggregated table * @param keySerde key serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param aggValueSerde aggregate value serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param <T> the value type of the resulted {@link KTable}
*/ */
<T, W extends Window> KTable<Windowed<K>, T> aggregateByKey(Initializer<T> initializer, <T, W extends Window> KTable<Windowed<K>, T> aggregateByKey(Initializer<T> initializer,
Aggregator<K, V, T> aggregator, Aggregator<K, V, T> aggregator,
@ -331,25 +341,29 @@ public interface KStream<K, V> {
Serde<T> aggValueSerde); Serde<T> aggValueSerde);
/** /**
* Aggregate values of this stream by key on a window basis. * Aggregate values of this stream by key on a window basis into a new instance of windowed {@link KTable}
* with default serializers and deserializers.
* *
* @param initializer the class of {@link Initializer} * @param initializer the instance of {@link Initializer}
* @param aggregator the class of {@link Aggregator} * @param aggregator the instance of {@link Aggregator}
* @param windows the specification of the aggregation {@link Windows} * @param windows the specification of the aggregation {@link Windows}
* @param <T> the value type of the aggregated table * @param <T> the value type of the resulted {@link KTable}
*/ */
<T, W extends Window> KTable<Windowed<K>, T> aggregateByKey(Initializer<T> initializer, <T, W extends Window> KTable<Windowed<K>, T> aggregateByKey(Initializer<T> initializer,
Aggregator<K, V, T> aggregator, Aggregator<K, V, T> aggregator,
Windows<W> windows); Windows<W> windows);
/** /**
* Aggregate values of this stream by key without a window basis, and hence * Aggregate values of this stream by key into a new instance of ever-updating {@link KTable}.
* return an ever updating table
* *
* @param initializer the class of {@link Initializer} * @param initializer the class of {@link Initializer}
* @param aggregator the class of {@link Aggregator} * @param aggregator the class of {@link Aggregator}
* @param name the name of the aggregated table * @param keySerde key serdes for materializing the aggregated table,
* @param <T> the value type of the aggregated table * if not specified the default serdes defined in the configs will be used
* @param aggValueSerde aggregate value serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param name the name of the resulted {@link KTable}
* @param <T> the value type of the resulted {@link KTable}
*/ */
<T> KTable<K, T> aggregateByKey(Initializer<T> initializer, <T> KTable<K, T> aggregateByKey(Initializer<T> initializer,
Aggregator<K, V, T> aggregator, Aggregator<K, V, T> aggregator,
@ -358,45 +372,49 @@ public interface KStream<K, V> {
String name); String name);
/** /**
* Aggregate values of this stream by key without a window basis, and hence * Aggregate values of this stream by key into a new instance of ever-updating {@link KTable}
* return an ever updating table * with default serializers and deserializers.
* *
* @param initializer the class of {@link Initializer} * @param initializer the class of {@link Initializer}
* @param aggregator the class of {@link Aggregator} * @param aggregator the class of {@link Aggregator}
* @param name the name of the aggregated table * @param name the name of the resulted {@link KTable}
* @param <T> the value type of the aggregated table * @param <T> the value type of the resulted {@link KTable}
*/ */
<T> KTable<K, T> aggregateByKey(Initializer<T> initializer, <T> KTable<K, T> aggregateByKey(Initializer<T> initializer,
Aggregator<K, V, T> aggregator, Aggregator<K, V, T> aggregator,
String name); String name);
/** /**
* Count number of messages of this stream by key on a window basis. * Count number of messages of this stream by key on a window basis into a new instance of windowed {@link KTable}.
* *
* @param windows the specification of the aggregation {@link Windows} * @param windows the specification of the aggregation {@link Windows}
* @param keySerde key serdes for materializing the counting table,
* if not specified the default serdes defined in the configs will be used
*/ */
<W extends Window> KTable<Windowed<K>, Long> countByKey(Windows<W> windows, Serde<K> keySerde); <W extends Window> KTable<Windowed<K>, Long> countByKey(Windows<W> windows, Serde<K> keySerde);
/** /**
* Count number of messages of this stream by key on a window basis. * Count number of messages of this stream by key on a window basis into a new instance of windowed {@link KTable}
* with default serializers and deserializers.
* *
* @param windows the specification of the aggregation {@link Windows} * @param windows the specification of the aggregation {@link Windows}
*/ */
<W extends Window> KTable<Windowed<K>, Long> countByKey(Windows<W> windows); <W extends Window> KTable<Windowed<K>, Long> countByKey(Windows<W> windows);
/** /**
* Count number of messages of this stream by key without a window basis, and hence * Count number of messages of this stream by key into a new instance of ever-updating {@link KTable}.
* return a ever updating counting table.
* *
* @param name the name of the aggregated table * @param keySerde key serdes for materializing the counting table,
* if not specified the default serdes defined in the configs will be used
* @param name the name of the resulted {@link KTable}
*/ */
KTable<K, Long> countByKey(Serde<K> keySerde, String name); KTable<K, Long> countByKey(Serde<K> keySerde, String name);
/** /**
* Count number of messages of this stream by key without a window basis, and hence * Count number of messages of this stream by key into a new instance of ever-updating {@link KTable}
* return a ever updating counting table. * with default serializers and deserializers.
* *
* @param name the name of the aggregated table * @param name the name of the resulted {@link KTable}
*/ */
KTable<K, Long> countByKey(String name); KTable<K, Long> countByKey(String name);

View File

@ -28,8 +28,8 @@ import java.util.Collections;
import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicInteger;
/** /**
* KStreamBuilder is a subclass of {@link TopologyBuilder} that provides the {@link KStream} DSL * KStreamBuilder is a subclass of {@link TopologyBuilder} that provides the Kafka Streams DSL
* for users to specify computational logic and translates the given logic to a processor topology. * for users to specify computational logic and translates the given logic to a {@link org.apache.kafka.streams.processor.internals.ProcessorTopology}.
*/ */
public class KStreamBuilder extends TopologyBuilder { public class KStreamBuilder extends TopologyBuilder {
@ -40,25 +40,23 @@ public class KStreamBuilder extends TopologyBuilder {
} }
/** /**
* Creates a KStream instance for the specified topic. * Creates a {@link KStream} instance from the specified topics.
* The default deserializers specified in the config are used. * The default deserializers specified in the config are used.
* *
* @param topics the topic names, if empty default to all the topics in the config * @param topics the topic names; must contain at least one topic name
* @return KStream
*/ */
public <K, V> KStream<K, V> stream(String... topics) { public <K, V> KStream<K, V> stream(String... topics) {
return stream(null, null, topics); return stream(null, null, topics);
} }
/** /**
* Creates a KStream instance for the specified topic. * Creates a {@link KStream} instance for the specified topics.
* *
* @param keySerde key serde used to read this source KStream, * @param keySerde key serde used to read this source {@link KStream},
* if not specified the default serde defined in the configs will be used * if not specified the default serde defined in the configs will be used
* @param valSerde value serde used to read this source KStream, * @param valSerde value serde used to read this source {@link KStream},
* if not specified the default serde defined in the configs will be used * if not specified the default serde defined in the configs will be used
* @param topics the topic names, if empty default to all the topics in the config * @param topics the topic names; must contain at least one topic name
* @return KStream
*/ */
public <K, V> KStream<K, V> stream(Serde<K> keySerde, Serde<V> valSerde, String... topics) { public <K, V> KStream<K, V> stream(Serde<K> keySerde, Serde<V> valSerde, String... topics) {
String name = newName(KStreamImpl.SOURCE_NAME); String name = newName(KStreamImpl.SOURCE_NAME);
@ -69,25 +67,23 @@ public class KStreamBuilder extends TopologyBuilder {
} }
/** /**
* Creates a KTable instance for the specified topic. * Creates a {@link KTable} instance for the specified topic.
* The default deserializers specified in the config are used. * The default deserializers specified in the config are used.
* *
* @param topic the topic name * @param topic the topic name; cannot be null
* @return KTable
*/ */
public <K, V> KTable<K, V> table(String topic) { public <K, V> KTable<K, V> table(String topic) {
return table(null, null, topic); return table(null, null, topic);
} }
/** /**
* Creates a KTable instance for the specified topic. * Creates a {@link KTable} instance for the specified topic.
* *
* @param keySerde key serde used to send key-value pairs, * @param keySerde key serde used to send key-value pairs,
* if not specified the default key serde defined in the configuration will be used * if not specified the default key serde defined in the configuration will be used
* @param valSerde value serde used to send key-value pairs, * @param valSerde value serde used to send key-value pairs,
* if not specified the default value serde defined in the configuration will be used * if not specified the default value serde defined in the configuration will be used
* @param topic the topic name * @param topic the topic name; cannot be null
* @return KStream
*/ */
public <K, V> KTable<K, V> table(Serde<K> keySerde, Serde<V> valSerde, String topic) { public <K, V> KTable<K, V> table(Serde<K> keySerde, Serde<V> valSerde, String topic) {
String source = newName(KStreamImpl.SOURCE_NAME); String source = newName(KStreamImpl.SOURCE_NAME);
@ -102,10 +98,9 @@ public class KStreamBuilder extends TopologyBuilder {
} }
/** /**
* Creates a new stream by merging the given streams * Creates a new instance of {@link KStream} by merging the given streams
* *
* @param streams the streams to be merged * @param streams the instances of {@link KStream} to be merged
* @return KStream
*/ */
public <K, V> KStream<K, V> merge(KStream<K, V>... streams) { public <K, V> KStream<K, V> merge(KStream<K, V>... streams) {
return KStreamImpl.merge(this, streams); return KStreamImpl.merge(this, streams);
@ -115,8 +110,7 @@ public class KStreamBuilder extends TopologyBuilder {
* Create a unique processor name used for translation into the processor topology. * Create a unique processor name used for translation into the processor topology.
* This function is only for internal usage. * This function is only for internal usage.
* *
* @param prefix Processor name prefix. * @param prefix processor name prefix
* @return The unique processor name.
*/ */
public String newName(String prefix) { public String newName(String prefix) {
return prefix + String.format("%010d", index.getAndIncrement()); return prefix + String.format("%010d", index.getAndIncrement());

View File

@ -17,73 +17,72 @@
package org.apache.kafka.streams.kstream; package org.apache.kafka.streams.kstream;
import org.apache.kafka.common.annotation.InterfaceStability;
import org.apache.kafka.common.serialization.Serde; import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.streams.KeyValue; import org.apache.kafka.streams.KeyValue;
/** /**
* KTable is an abstraction of a change log stream from a primary-keyed table. * KTable is an abstraction of a <i>changelog stream</i> from a primary-keyed table.
* *
* @param <K> Type of primary keys * @param <K> Type of primary keys
* @param <V> Type of value changes * @param <V> Type of value changes
*/ */
@InterfaceStability.Unstable
public interface KTable<K, V> { public interface KTable<K, V> {
/** /**
* Creates a new instance of KTable consists of all elements of this stream which satisfy a predicate * Create a new instance of {@link KTable} that consists of all elements of this stream which satisfy a predicate.
* *
* @param predicate the instance of Predicate * @param predicate the instance of {@link Predicate}
* @return the instance of KTable with only those elements that satisfy the predicate
*/ */
KTable<K, V> filter(Predicate<K, V> predicate); KTable<K, V> filter(Predicate<K, V> predicate);
/** /**
* Creates a new instance of KTable consists all elements of this stream which do not satisfy a predicate * Create a new instance of {@link KTable} that consists all elements of this stream which do not satisfy a predicate
* *
* @param predicate the instance of Predicate * @param predicate the instance of {@link Predicate}
* @return the instance of KTable with only those elements that do not satisfy the predicate
*/ */
KTable<K, V> filterOut(Predicate<K, V> predicate); KTable<K, V> filterOut(Predicate<K, V> predicate);
/** /**
* Creates a new instance of KTable by transforming each value in this stream into a different value in the new stream. * Create a new instance of {@link KTable} by transforming the value of each element in this stream into a new value in the new stream.
* *
* @param mapper the instance of ValueMapper * @param mapper the instance of {@link ValueMapper}
* @param <V1> the value type of the new stream * @param <V1> the value type of the new stream
* @return the instance of KTable
*/ */
<V1> KTable<K, V1> mapValues(ValueMapper<V, V1> mapper); <V1> KTable<K, V1> mapValues(ValueMapper<V, V1> mapper);
/** /**
* Sends key-value to a topic, also creates a new instance of KTable from the topic. * Materialize this stream to a topic, also creates a new instance of {@link KTable} from the topic
* This is equivalent to calling to(topic) and table(topic). * using default serializers and deserializers.
* This is equivalent to calling {@link #to(String)} and {@link org.apache.kafka.streams.kstream.KStreamBuilder#table(String)}.
* *
* @param topic the topic name * @param topic the topic name
* @return the instance of KTable that consumes the given topic
*/ */
KTable<K, V> through(String topic); KTable<K, V> through(String topic);
/** /**
* Sends key-value to a topic, also creates a new instance of KTable from the topic. * Materialize this stream to a topic, also creates a new instance of {@link KTable} from the topic.
* This is equivalent to calling to(topic) and table(topic). * This is equivalent to calling {@link #to(Serde, Serde, String)} and
* {@link org.apache.kafka.streams.kstream.KStreamBuilder#table(Serde, Serde, String)}.
* *
* @param keySerde key serde used to send key-value pairs, * @param keySerde key serde used to send key-value pairs,
* if not specified the default key serde defined in the configuration will be used * if not specified the default key serde defined in the configuration will be used
* @param valSerde value serde used to send key-value pairs, * @param valSerde value serde used to send key-value pairs,
* if not specified the default value serde defined in the configuration will be used * if not specified the default value serde defined in the configuration will be used
* @param topic the topic name * @param topic the topic name
* @return the new stream that consumes the given topic
*/ */
KTable<K, V> through(Serde<K> keySerde, Serde<V> valSerde, String topic); KTable<K, V> through(Serde<K> keySerde, Serde<V> valSerde, String topic);
/** /**
* Sends key-value to a topic using default serializers specified in the config. * Materialize this stream to a topic using default serializers specified in the config.
* *
* @param topic the topic name * @param topic the topic name
*/ */
void to(String topic); void to(String topic);
/** /**
* Sends key-value to a topic. * Materialize this stream to a topic.
* *
* @param keySerde key serde used to send key-value pairs, * @param keySerde key serde used to send key-value pairs,
* if not specified the default serde defined in the configs will be used * if not specified the default serde defined in the configs will be used
@ -94,55 +93,53 @@ public interface KTable<K, V> {
void to(Serde<K> keySerde, Serde<V> valSerde, String topic); void to(Serde<K> keySerde, Serde<V> valSerde, String topic);
/** /**
* Creates a new instance of KStream from this KTable * Convert this stream to a new instance of {@link KStream}.
*
* @return the instance of KStream
*/ */
KStream<K, V> toStream(); KStream<K, V> toStream();
/** /**
* Combines values of this KTable with another KTable using Inner Join. * Combine values of this stream with another {@link KTable} stream's elements of the same key using Inner Join.
* *
* @param other the instance of KTable joined with this stream * @param other the instance of {@link KTable} joined with this stream
* @param joiner ValueJoiner * @param joiner the instance of {@link ValueJoiner}
* @param <V1> the value type of the other stream * @param <V1> the value type of the other stream
* @param <R> the value type of the new stream * @param <R> the value type of the new stream
* @return the instance of KTable
*/ */
<V1, R> KTable<K, R> join(KTable<K, V1> other, ValueJoiner<V, V1, R> joiner); <V1, R> KTable<K, R> join(KTable<K, V1> other, ValueJoiner<V, V1, R> joiner);
/** /**
* Combines values of this KTable with another KTable using Outer Join. * Combine values of this stream with another {@link KTable} stream's elements of the same key using Outer Join.
* *
* @param other the instance of KTable joined with this stream * @param other the instance of {@link KTable} joined with this stream
* @param joiner ValueJoiner * @param joiner the instance of {@link ValueJoiner}
* @param <V1> the value type of the other stream * @param <V1> the value type of the other stream
* @param <R> the value type of the new stream * @param <R> the value type of the new stream
* @return the instance of KTable
*/ */
<V1, R> KTable<K, R> outerJoin(KTable<K, V1> other, ValueJoiner<V, V1, R> joiner); <V1, R> KTable<K, R> outerJoin(KTable<K, V1> other, ValueJoiner<V, V1, R> joiner);
/** /**
* Combines values of this KTable with another KTable using Left Join. * Combine values of this stream with another {@link KTable} stream's elements of the same key using Left Join.
* *
* @param other the instance of KTable joined with this stream * @param other the instance of {@link KTable} joined with this stream
* @param joiner ValueJoiner * @param joiner the instance of {@link ValueJoiner}
* @param <V1> the value type of the other stream * @param <V1> the value type of the other stream
* @param <R> the value type of the new stream * @param <R> the value type of the new stream
* @return the instance of KTable
*/ */
<V1, R> KTable<K, R> leftJoin(KTable<K, V1> other, ValueJoiner<V, V1, R> joiner); <V1, R> KTable<K, R> leftJoin(KTable<K, V1> other, ValueJoiner<V, V1, R> joiner);
/** /**
* Reduce values of this table by the selected key. * Combine updating values of this stream by the selected key into a new instance of {@link KTable}.
* *
* @param adder the class of Reducer * @param adder the instance of {@link Reducer} for addition
* @param subtractor the class of Reducer * @param subtractor the instance of {@link Reducer} for subtraction
* @param selector the KeyValue mapper that select the aggregate key * @param selector the instance of {@link KeyValueMapper} that select the aggregate key
* @param name the name of the resulted table * @param keySerde key serdes for materializing the aggregated table,
* @param <K1> the key type of the aggregated table * if not specified the default serdes defined in the configs will be used
* @param <V1> the value type of the aggregated table * @param valueSerde value serdes for materializing the aggregated table,
* @return the instance of KTable * if not specified the default serdes defined in the configs will be used
* @param name the name of the resulted {@link KTable}
* @param <K1> the key type of the aggregated {@link KTable}
* @param <V1> the value type of the aggregated {@link KTable}
*/ */
<K1, V1> KTable<K1, V1> reduce(Reducer<V1> adder, <K1, V1> KTable<K1, V1> reduce(Reducer<V1> adder,
Reducer<V1> subtractor, Reducer<V1> subtractor,
@ -152,15 +149,15 @@ public interface KTable<K, V> {
String name); String name);
/** /**
* Reduce values of this table by the selected key. * Combine updating values of this stream by the selected key into a new instance of {@link KTable}
* using default serializers and deserializers.
* *
* @param adder the instance of {@link Reducer} for addition * @param adder the instance of {@link Reducer} for addition
* @param subtractor the instance of {@link Reducer} for subtraction * @param subtractor the instance of {@link Reducer} for subtraction
* @param selector the instance of {@link KeyValueMapper} that select the aggregate key * @param selector the instance of {@link KeyValueMapper} that select the aggregate key
* @param name the name of the resulted table * @param name the name of the resulted {@link KTable}
* @param <K1> the key type of the aggregated table * @param <K1> the key type of the aggregated {@link KTable}
* @param <V1> the value type of the aggregated table * @param <V1> the value type of the aggregated {@link KTable}
* @return the instance of KTable
*/ */
<K1, V1> KTable<K1, V1> reduce(Reducer<V1> adder, <K1, V1> KTable<K1, V1> reduce(Reducer<V1> adder,
Reducer<V1> subtractor, Reducer<V1> subtractor,
@ -168,20 +165,26 @@ public interface KTable<K, V> {
String name); String name);
/** /**
* Aggregate values of this table by the selected key. * Aggregate updating values of this stream by the selected key into a new instance of {@link KTable}.
* *
* @param initializer the class of Initializer * @param initializer the instance of {@link Initializer}
* @param add the class of Aggregator * @param adder the instance of {@link Aggregator} for addition
* @param remove the class of Aggregator * @param substractor the instance of {@link Aggregator} for subtraction
* @param selector the KeyValue mapper that select the aggregate key * @param selector the instance of {@link KeyValueMapper} that select the aggregate key
* @param keySerde key serdes for materializing this stream and the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param valueSerde value serdes for materializing this stream,
* if not specified the default serdes defined in the configs will be used
* @param aggValueSerde value serdes for materializing the aggregated table,
* if not specified the default serdes defined in the configs will be used
* @param name the name of the resulted table * @param name the name of the resulted table
* @param <K1> the key type of the aggregated table * @param <K1> the key type of this {@link KTable}
* @param <V1> the value type of the aggregated table * @param <V1> the value type of this {@link KTable}
* @return the instance of KTable * @param <T> the value type of the aggregated {@link KTable}
*/ */
<K1, V1, T> KTable<K1, T> aggregate(Initializer<T> initializer, <K1, V1, T> KTable<K1, T> aggregate(Initializer<T> initializer,
Aggregator<K1, V1, T> add, Aggregator<K1, V1, T> adder,
Aggregator<K1, V1, T> remove, Aggregator<K1, V1, T> substractor,
KeyValueMapper<K, V, KeyValue<K1, V1>> selector, KeyValueMapper<K, V, KeyValue<K1, V1>> selector,
Serde<K1> keySerde, Serde<K1> keySerde,
Serde<V1> valueSerde, Serde<V1> valueSerde,
@ -189,16 +192,17 @@ public interface KTable<K, V> {
String name); String name);
/** /**
* Aggregate values of this table by the selected key. * Aggregate updating values of this stream by the selected key into a new instance of {@link KTable}
* using default serializers and deserializers.
* *
* @param initializer the instance of {@link Initializer} * @param initializer the instance of {@link Initializer}
* @param adder the instance of {@link Aggregator} for addition * @param adder the instance of {@link Aggregator} for addition
* @param substractor the instance of {@link Aggregator} for subtraction * @param substractor the instance of {@link Aggregator} for subtraction
* @param selector the instance of {@link KeyValueMapper} that select the aggregate key * @param selector the instance of {@link KeyValueMapper} that select the aggregate key
* @param name the name of the resulted table * @param name the name of the resulted {@link KTable}
* @param <K1> the key type of the aggregated table * @param <K1> the key type of the aggregated {@link KTable}
* @param <V1> the value type of the aggregated table * @param <V1> the value type of the aggregated {@link KTable}
* @return the instance of aggregated {@link KTable} * @param <T> the value type of the aggregated {@link KTable}
*/ */
<K1, V1, T> KTable<K1, T> aggregate(Initializer<T> initializer, <K1, V1, T> KTable<K1, T> aggregate(Initializer<T> initializer,
Aggregator<K1, V1, T> adder, Aggregator<K1, V1, T> adder,
@ -207,12 +211,15 @@ public interface KTable<K, V> {
String name); String name);
/** /**
* Count number of records of this table by the selected key. * Count number of records of this stream by the selected key into a new instance of {@link KTable}.
* *
* @param selector the KeyValue mapper that select the aggregate key * @param selector the instance of {@link KeyValueMapper} that select the aggregate key
* @param keySerde key serdes for materializing this stream,
* if not specified the default serdes defined in the configs will be used
* @param valueSerde value serdes for materializing this stream,
* if not specified the default serdes defined in the configs will be used
* @param name the name of the resulted table * @param name the name of the resulted table
* @param <K1> the key type of the aggregated table * @param <K1> the key type of the aggregated {@link KTable}
* @return the instance of KTable
*/ */
<K1> KTable<K1, Long> count(KeyValueMapper<K, V, K1> selector, <K1> KTable<K1, Long> count(KeyValueMapper<K, V, K1> selector,
Serde<K1> keySerde, Serde<K1> keySerde,
@ -220,12 +227,12 @@ public interface KTable<K, V> {
String name); String name);
/** /**
* Count number of records of this table by the selected key. * Count number of records of this stream by the selected key into a new instance of {@link KTable}
* using default serializers and deserializers.
* *
* @param selector the instance of {@link KeyValueMapper} that select the aggregate key * @param selector the instance of {@link KeyValueMapper} that select the aggregate key
* @param name the name of the resulted table * @param name the name of the resulted {@link KTable}
* @param <K1> the key type of the aggregated table * @param <K1> the key type of the aggregated {@link KTable}
* @return the instance of aggregated {@link KTable}
*/ */
<K1> KTable<K1, Long> count(KeyValueMapper<K, V, K1> selector, String name); <K1> KTable<K1, Long> count(KeyValueMapper<K, V, K1> selector, String name);
} }

View File

@ -20,9 +20,9 @@ package org.apache.kafka.streams.kstream;
/** /**
* The KeyValueMapper interface for mapping a key-value pair to a new value (could be another key-value pair). * The KeyValueMapper interface for mapping a key-value pair to a new value (could be another key-value pair).
* *
* @param <K> Original key type. * @param <K> original key type
* @param <V> Original value type. * @param <V> original value type
* @param <R> Mapped value type. * @param <R> mapped value type
*/ */
public interface KeyValueMapper<K, V, R> { public interface KeyValueMapper<K, V, R> {

View File

@ -20,8 +20,8 @@ package org.apache.kafka.streams.kstream;
/** /**
* The Predicate interface represents a predicate (boolean-valued function) of a key-value pair. * The Predicate interface represents a predicate (boolean-valued function) of a key-value pair.
* *
* @param <K> Key type. * @param <K> key type
* @param <V> Value type. * @param <V> value type
*/ */
public interface Predicate<K, V> { public interface Predicate<K, V> {

View File

@ -20,7 +20,7 @@ package org.apache.kafka.streams.kstream;
/** /**
* The Reducer interface for combining two values of the same type into a new value. * The Reducer interface for combining two values of the same type into a new value.
* *
* @param <V> Value type. * @param <V> value type
*/ */
public interface Reducer<V> { public interface Reducer<V> {

View File

@ -22,9 +22,9 @@ import org.apache.kafka.streams.processor.ProcessorContext;
/** /**
* A stateful Transformer interface for transform a key-value pair into a new value. * A stateful Transformer interface for transform a key-value pair into a new value.
* *
* @param <K> Key type. * @param <K> key type
* @param <V> Value type. * @param <V> value type
* @param <R> Return type. * @param <R> return type
*/ */
public interface Transformer<K, V, R> { public interface Transformer<K, V, R> {

View File

@ -20,9 +20,9 @@ package org.apache.kafka.streams.kstream;
/** /**
* The ValueJoiner interface for joining two values and return a the joined new value. * The ValueJoiner interface for joining two values and return a the joined new value.
* *
* @param <V1> First value type. * @param <V1> first value type
* @param <V2> Second value type. * @param <V2> second value type
* @param <R> Joined value type. * @param <R> joined value type
*/ */
public interface ValueJoiner<V1, V2, R> { public interface ValueJoiner<V1, V2, R> {

View File

@ -20,8 +20,8 @@ package org.apache.kafka.streams.kstream;
/** /**
* The KeyValueMapper interface for mapping an original value to a new value (could be another key-value pair). * The KeyValueMapper interface for mapping an original value to a new value (could be another key-value pair).
* *
* @param <V1> Original value type. * @param <V1> original value type
* @param <V2> Mapped value type. * @param <V2> mapped value type
*/ */
public interface ValueMapper<V1, V2> { public interface ValueMapper<V1, V2> {

View File

@ -22,8 +22,8 @@ import org.apache.kafka.streams.processor.ProcessorContext;
/** /**
* A stateful Value Transformer interface for transform a value into a new value. * A stateful Value Transformer interface for transform a value into a new value.
* *
* @param <V> Value type. * @param <V> value type
* @param <R> Return type. * @param <R> return type
*/ */
public interface ValueTransformer<V, R> { public interface ValueTransformer<V, R> {

View File

@ -19,9 +19,8 @@ package org.apache.kafka.streams.kstream;
/** /**
* The windowed key interface used in {@link KTable}, used for representing a windowed table result from windowed stream aggregations, * The windowed key interface used in {@link KTable}, used for representing a windowed table result from windowed stream aggregations,
* i.e. {@link KStream#aggregateByKey(Initializer, Aggregator, Windows, org.apache.kafka.common.serialization.Serializer, * i.e. {@link KStream#aggregateByKey(Initializer, Aggregator, Windows, org.apache.kafka.common.serialization.Serde,
* org.apache.kafka.common.serialization.Serializer, org.apache.kafka.common.serialization.Deserializer, * org.apache.kafka.common.serialization.Serde)}
* org.apache.kafka.common.serialization.Deserializer)}
* *
* @param <T> Type of the key * @param <T> Type of the key
*/ */

View File

@ -24,7 +24,7 @@ import java.util.concurrent.atomic.AtomicInteger;
/** /**
* The window specification interface that can be extended for windowing operation in joins and aggregations. * The window specification interface that can be extended for windowing operation in joins and aggregations.
* *
* @param <W> Type of the window instance * @param <W> type of the window instance
*/ */
public abstract class Windows<W extends Window> { public abstract class Windows<W extends Window> {
@ -38,17 +38,17 @@ public abstract class Windows<W extends Window> {
protected String name; protected String name;
private long emitDuration; private long emitDurationMs;
private long maintainDuration; private long maintainDurationMs;
public int segments; public int segments;
protected Windows(String name) { protected Windows(String name) {
this.name = name; this.name = name;
this.segments = DEFAULT_NUM_SEGMENTS; this.segments = DEFAULT_NUM_SEGMENTS;
this.emitDuration = DEFAULT_EMIT_DURATION; this.emitDurationMs = DEFAULT_EMIT_DURATION;
this.maintainDuration = DEFAULT_MAINTAIN_DURATION; this.maintainDurationMs = DEFAULT_MAINTAIN_DURATION;
} }
public String name() { public String name() {
@ -56,29 +56,26 @@ public abstract class Windows<W extends Window> {
} }
/** /**
* Set the window emit duration in milliseconds of system time * Set the window emit duration in milliseconds of system time.
*/ */
public Windows emit(long duration) { public Windows emit(long durationMs) {
this.emitDuration = duration; this.emitDurationMs = durationMs;
return this; return this;
} }
/** /**
* Set the window maintain duration in milliseconds of system time * Set the window maintain duration in milliseconds of system time.
*/ */
public Windows until(long duration) { public Windows until(long durationMs) {
this.maintainDuration = duration; this.maintainDurationMs = durationMs;
return this; return this;
} }
/** /**
* Specifies the number of segments to be used for rolling the window store, * Specify the number of segments to be used for rolling the window store,
* this function is not exposed to users but can be called by developers that extend this JoinWindows specs * this function is not exposed to users but can be called by developers that extend this JoinWindows specs.
*
* @param segments
* @return
*/ */
protected Windows segments(int segments) { protected Windows segments(int segments) {
this.segments = segments; this.segments = segments;
@ -87,11 +84,11 @@ public abstract class Windows<W extends Window> {
} }
public long emitEveryMs() { public long emitEveryMs() {
return this.emitDuration; return this.emitDurationMs;
} }
public long maintainMs() { public long maintainMs() {
return this.maintainDuration; return this.maintainDurationMs;
} }
protected String newName(String prefix) { protected String newName(String prefix) {

View File

@ -39,11 +39,11 @@ import java.util.Set;
public class DefaultPartitionGrouper implements PartitionGrouper { public class DefaultPartitionGrouper implements PartitionGrouper {
/** /**
* Generate tasks with the assigned topic partitions * Generate tasks with the assigned topic partitions.
* *
* @param topicGroups {@link TopologyBuilder#topicGroups()} where topics of the same group need to be joined together * @param topicGroups group of topics that need to be joined together
* @param metadata Metadata of the consuming cluster * @param metadata metadata of the consuming cluster
* @return The map from generated task ids to the assigned partitions. * @return The map from generated task ids to the assigned partitions
*/ */
public Map<TaskId, Set<TopicPartition>> partitionGroups(Map<Integer, Set<String>> topicGroups, Cluster metadata) { public Map<TaskId, Set<TopicPartition>> partitionGroups(Map<Integer, Set<String>> topicGroups, Cluster metadata) {
Map<TaskId, Set<TopicPartition>> groups = new HashMap<>(); Map<TaskId, Set<TopicPartition>> groups = new HashMap<>();

View File

@ -17,6 +17,7 @@
package org.apache.kafka.streams.processor; package org.apache.kafka.streams.processor;
import org.apache.kafka.common.annotation.InterfaceStability;
import org.apache.kafka.common.serialization.Serde; import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.streams.StreamsMetrics; import org.apache.kafka.streams.StreamsMetrics;
@ -25,6 +26,7 @@ import java.io.File;
/** /**
* Processor context interface. * Processor context interface.
*/ */
@InterfaceStability.Unstable
public interface ProcessorContext { public interface ProcessorContext {
/** /**

View File

@ -19,6 +19,7 @@
package org.apache.kafka.streams.state; package org.apache.kafka.streams.state;
import org.apache.kafka.common.annotation.InterfaceStability;
import org.apache.kafka.streams.KeyValue; import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.processor.StateStore; import org.apache.kafka.streams.processor.StateStore;
@ -30,6 +31,7 @@ import java.util.List;
* @param <K> The key type * @param <K> The key type
* @param <V> The value type * @param <V> The value type
*/ */
@InterfaceStability.Unstable
public interface KeyValueStore<K, V> extends StateStore { public interface KeyValueStore<K, V> extends StateStore {
/** /**

View File

@ -19,6 +19,7 @@
package org.apache.kafka.streams.state; package org.apache.kafka.streams.state;
import org.apache.kafka.common.annotation.InterfaceStability;
import org.apache.kafka.streams.processor.StateStore; import org.apache.kafka.streams.processor.StateStore;
/** /**
@ -27,6 +28,7 @@ import org.apache.kafka.streams.processor.StateStore;
* @param <K> Type of keys * @param <K> Type of keys
* @param <V> Type of values * @param <V> Type of values
*/ */
@InterfaceStability.Unstable
public interface WindowStore<K, V> extends StateStore { public interface WindowStore<K, V> extends StateStore {
/** /**