mirror of https://github.com/apache/kafka.git
				
				
				
			
		
			
				
	
	
		
			609 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			HTML
		
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			HTML
		
	
	
	
| <!--
 | |
|  Licensed to the Apache Software Foundation (ASF) under one or more
 | |
|  contributor license agreements.  See the NOTICE file distributed with
 | |
|  this work for additional information regarding copyright ownership.
 | |
|  The ASF licenses this file to You under the Apache License, Version 2.0
 | |
|  (the "License"); you may not use this file except in compliance with
 | |
|  the License.  You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
|  Unless required by applicable law or agreed to in writing, software
 | |
|  distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  See the License for the specific language governing permissions and
 | |
|  limitations under the License.
 | |
| -->
 | |
| <script><!--#include virtual="../js/templateData.js" --></script>
 | |
| 
 | |
| <script id="content-template" type="text/x-handlebars-template">
 | |
|     <h1>Tutorial: Write a Kafka Streams Application</h1>
 | |
|     <div class="sub-nav-sticky">
 | |
|         <div class="sticky-top">
 | |
|             <div style="height:35px">
 | |
|                 <a href="/{{version}}/documentation/streams/">Introduction</a>
 | |
|                 <a href="/{{version}}/documentation/streams/quickstart">Run Demo App</a>
 | |
|                 <a class="active-menu-item" href="/{{version}}/documentation/streams/tutorial">Tutorial: Write App</a>
 | |
|                 <a href="/{{version}}/documentation/streams/core-concepts">Concepts</a>
 | |
|                 <a href="/{{version}}/documentation/streams/architecture">Architecture</a>
 | |
|                 <a href="/{{version}}/documentation/streams/developer-guide/">Developer Guide</a>
 | |
|                 <a href="/{{version}}/documentation/streams/upgrade-guide">Upgrade</a>
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
|     <p>
 | |
|         In this guide we will start from scratch on setting up your own project to write a stream processing application using Kafka Streams.
 | |
|         It is highly recommended to read the <a href="/{{version}}/documentation/streams/quickstart">quickstart</a> first on how to run a Streams application written in Kafka Streams if you have not done so.
 | |
|     </p>
 | |
| 
 | |
|     <h4 class="anchor-heading"><a id="tutorial_maven_setup" class="anchor-link"></a><a href="#tutorial_maven_setup">Setting up a Maven Project</a></h4>
 | |
| 
 | |
|     <p>
 | |
|         We are going to use a Kafka Streams Maven Archetype for creating a Streams project structure with the following commands:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ mvn archetype:generate \
 | |
| -DarchetypeGroupId=org.apache.kafka \
 | |
| -DarchetypeArtifactId=streams-quickstart-java \
 | |
| -DarchetypeVersion={{fullDotVersion}} \
 | |
| -DgroupId=streams.examples \
 | |
| -DartifactId=streams-quickstart \
 | |
| -Dversion=0.1 \
 | |
| -Dpackage=myapps</code></pre>
 | |
|     <p>
 | |
|         You can use a different value for <code>groupId</code>, <code>artifactId</code> and <code>package</code> parameters if you like.
 | |
|         Assuming the above parameter values are used, this command will create a project structure that looks like this:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ tree streams-quickstart
 | |
| streams-quickstart
 | |
| |-- pom.xml
 | |
| |-- src
 | |
|     |-- main
 | |
|         |-- java
 | |
|         |   |-- myapps
 | |
|         |       |-- LineSplit.java
 | |
|         |       |-- Pipe.java
 | |
|         |       |-- WordCount.java
 | |
|         |-- resources
 | |
|             |-- log4j.properties</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         The <code>pom.xml</code> file included in the project already has the Streams dependency defined.
 | |
|         Note, that the generated <code>pom.xml</code> targets Java 11.
 | |
|     </p>
 | |
| 
 | |
|     <p>
 | |
|         There are already several example programs written with Streams library under <code>src/main/java</code>.
 | |
|         Since we are going to start writing such programs from scratch, we can now delete these examples:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ cd streams-quickstart
 | |
| $ rm src/main/java/myapps/*.java</code></pre>
 | |
| 
 | |
|     <h4><a id="tutorial_code_pipe" href="#tutorial_code_pipe">Writing a first Streams application: Pipe</a></h4>
 | |
| 
 | |
|     It's coding time now! Feel free to open your favorite IDE and import this Maven project, or simply open a text editor and create a java file under <code>src/main/java/myapps</code>.
 | |
|     Let's name it <code>Pipe.java</code>:
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">package myapps;
 | |
| 
 | |
| public class Pipe {
 | |
| 
 | |
|     public static void main(String[] args) throws Exception {
 | |
| 
 | |
|     }
 | |
| }</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         We are going to fill in the <code>main</code> function to write this pipe program. Note that we will not list the import statements as we go since IDEs can usually add them automatically.
 | |
|         However if you are using a text editor you need to manually add the imports, and at the end of this section we'll show the complete code snippet with import statement for you.
 | |
|     </p>
 | |
| 
 | |
|     <p>
 | |
|         The first step to write a Streams application is to create a <code>java.util.Properties</code> map to specify different Streams execution configuration values as defined in <code>StreamsConfig</code>.
 | |
|         A couple of important configuration values you need to set are: <code>StreamsConfig.BOOTSTRAP_SERVERS_CONFIG</code>, which specifies a list of host/port pairs to use for establishing the initial connection to the Kafka cluster,
 | |
|         and <code>StreamsConfig.APPLICATION_ID_CONFIG</code>, which gives the unique identifier of your Streams application to distinguish itself with other applications talking to the same Kafka cluster:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">Properties props = new Properties();
 | |
| props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-pipe");
 | |
| props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");    // assuming that the Kafka broker this application is talking to runs on local machine with port 9092</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         In addition, you can customize other configurations in the same map, for example, default serialization and deserialization libraries for the record key-value pairs:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
 | |
| props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         For a full list of configurations of Kafka Streams please refer to this <a href="/{{version}}/documentation/#streamsconfigs">table</a>.
 | |
|     </p>
 | |
| 
 | |
|     <p>
 | |
|         Next we will define the computational logic of our Streams application.
 | |
|         In Kafka Streams this computational logic is defined as a <code>topology</code> of connected processor nodes.
 | |
|         We can use a topology builder to construct such a topology,
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">final StreamsBuilder builder = new StreamsBuilder();</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         And then create a source stream from a Kafka topic named <code>streams-plaintext-input</code> using this topology builder:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">KStream<String, String> source = builder.stream("streams-plaintext-input");</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         Now we get a <code>KStream</code> that is continuously generating records from its source Kafka topic <code>streams-plaintext-input</code>.
 | |
|         The records are organized as <code>String</code> typed key-value pairs.
 | |
|         The simplest thing we can do with this stream is to write it into another Kafka topic, say it's named <code>streams-pipe-output</code>:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">source.to("streams-pipe-output");</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         Note that we can also concatenate the above two lines into a single line as:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">builder.stream("streams-plaintext-input").to("streams-pipe-output");</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         We can inspect what kind of <code>topology</code> is created from this builder by doing the following:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">final Topology topology = builder.build();</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         And print its description to standard output as:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">System.out.println(topology.describe());</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         If we just stop here, compile and run the program, it will output the following information:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ mvn clean package
 | |
| $ mvn exec:java -Dexec.mainClass=myapps.Pipe
 | |
| Sub-topologies:
 | |
|   Sub-topology: 0
 | |
|     Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-SINK-0000000001
 | |
|     Sink: KSTREAM-SINK-0000000001(topic: streams-pipe-output) <-- KSTREAM-SOURCE-0000000000
 | |
| Global Stores:
 | |
|   none</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         As shown above, it illustrates that the constructed topology has two processor nodes, a source node <code>KSTREAM-SOURCE-0000000000</code> and a sink node <code>KSTREAM-SINK-0000000001</code>.
 | |
|         <code>KSTREAM-SOURCE-0000000000</code> continuously read records from Kafka topic <code>streams-plaintext-input</code> and pipe them to its downstream node <code>KSTREAM-SINK-0000000001</code>;
 | |
|         <code>KSTREAM-SINK-0000000001</code> will write each of its received record in order to another Kafka topic <code>streams-pipe-output</code>
 | |
|         (the <code>--></code> and <code><--</code> arrows dictates the downstream and upstream processor nodes of this node, i.e. "children" and "parents" within the topology graph).
 | |
|         It also illustrates that this simple topology has no global state stores associated with it (we will talk about state stores more in the following sections).
 | |
|     </p>
 | |
| 
 | |
|     <p>
 | |
|         Note that we can always describe the topology as we did above at any given point while we are building it in the code, so as a user you can interactively "try and taste" your computational logic defined in the topology until you are happy with it.
 | |
|         Suppose we are already done with this simple topology that just pipes data from one Kafka topic to another in an endless streaming manner,
 | |
|         we can now construct the Streams client with the two components we have just constructed above: the configuration map specified in a <code>java.util.Properties</code> instance and the <code>Topology</code> object.
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">final KafkaStreams streams = new KafkaStreams(topology, props);</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         By calling its <code>start()</code> function we can trigger the execution of this client.
 | |
|         The execution won't stop until <code>close()</code> is called on this client.
 | |
|         We can, for example, add a shutdown hook with a countdown latch to capture a user interrupt and close the client upon terminating this program:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">final CountDownLatch latch = new CountDownLatch(1);
 | |
| 
 | |
| // attach shutdown handler to catch control-c
 | |
| Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") {
 | |
|     @Override
 | |
|     public void run() {
 | |
|         streams.close();
 | |
|         latch.countDown();
 | |
|     }
 | |
| });
 | |
| 
 | |
| try {
 | |
|     streams.start();
 | |
|     latch.await();
 | |
| } catch (Throwable e) {
 | |
|     System.exit(1);
 | |
| }
 | |
| System.exit(0);</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         The complete code so far looks like this:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">package myapps;
 | |
| 
 | |
| import org.apache.kafka.common.serialization.Serdes;
 | |
| import org.apache.kafka.streams.KafkaStreams;
 | |
| import org.apache.kafka.streams.StreamsBuilder;
 | |
| import org.apache.kafka.streams.StreamsConfig;
 | |
| import org.apache.kafka.streams.Topology;
 | |
| 
 | |
| import java.util.Properties;
 | |
| import java.util.concurrent.CountDownLatch;
 | |
| 
 | |
| public class Pipe {
 | |
| 
 | |
|     public static void main(String[] args) throws Exception {
 | |
|         Properties props = new Properties();
 | |
|         props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-pipe");
 | |
|         props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
 | |
|         props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
 | |
|         props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
 | |
| 
 | |
|         final StreamsBuilder builder = new StreamsBuilder();
 | |
| 
 | |
|         builder.stream("streams-plaintext-input").to("streams-pipe-output");
 | |
| 
 | |
|         final Topology topology = builder.build();
 | |
| 
 | |
|         final KafkaStreams streams = new KafkaStreams(topology, props);
 | |
|         final CountDownLatch latch = new CountDownLatch(1);
 | |
| 
 | |
|         // attach shutdown handler to catch control-c
 | |
|         Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") {
 | |
|             @Override
 | |
|             public void run() {
 | |
|                 streams.close();
 | |
|                 latch.countDown();
 | |
|             }
 | |
|         });
 | |
| 
 | |
|         try {
 | |
|             streams.start();
 | |
|             latch.await();
 | |
|         } catch (Throwable e) {
 | |
|             System.exit(1);
 | |
|         }
 | |
|         System.exit(0);
 | |
|     }
 | |
| }</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         If you already have the Kafka broker up and running at <code>localhost:9092</code>,
 | |
|         and the topics <code>streams-plaintext-input</code> and <code>streams-pipe-output</code> created on that broker,
 | |
|         you can run this code in your IDE or on the command line, using Maven:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ mvn clean package
 | |
| $ mvn exec:java -Dexec.mainClass=myapps.Pipe</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         For detailed instructions on how to run a Streams application and observe its computing results,
 | |
|         please read the <a href="/{{version}}/documentation/streams/quickstart">Play with a Streams Application</a> section.
 | |
|         We will not talk about this in the rest of this section.
 | |
|     </p>
 | |
| 
 | |
|     <h4><a id="tutorial_code_linesplit" href="#tutorial_code_linesplit">Writing a second Streams application: Line Split</a></h4>
 | |
| 
 | |
|     <p>
 | |
|         We have learned how to construct a Streams client with its two key components: the <code>StreamsConfig</code> and <code>Topology</code>.
 | |
|         Now let's move on to add some real processing logic by augmenting the current topology.
 | |
|         We can first create another program by first copy the existing <code>Pipe.java</code> class:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ cp src/main/java/myapps/Pipe.java src/main/java/myapps/LineSplit.java</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         And change its class name as well as the application id config to distinguish with the original program:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">public class LineSplit {
 | |
| 
 | |
|     public static void main(String[] args) throws Exception {
 | |
|         Properties props = new Properties();
 | |
|         props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-linesplit");
 | |
|         // ...
 | |
|     }
 | |
| }</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         Since each of the source stream's record is a <code>String</code> typed key-value pair,
 | |
|         let's treat the value string as a text line and split it into words with a <code>FlatMapValues</code> operator:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">KStream<String, String> source = builder.stream("streams-plaintext-input");
 | |
| KStream<String, String> words = source.flatMapValues(new ValueMapper<String, Iterable<String>>() {
 | |
|             @Override
 | |
|             public Iterable<String> apply(String value) {
 | |
|                 return Arrays.asList(value.split("\\W+"));
 | |
|             }
 | |
|         });</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         The operator will take the <code>source</code> stream as its input, and generate a new stream named <code>words</code>
 | |
|         by processing each record from its source stream in order and breaking its value string into a list of words, and producing
 | |
|         each word as a new record to the output <code>words</code> stream.
 | |
|         This is a stateless operator that does not need to keep track of any previously received records or processed results.
 | |
|         Note if you are using JDK 8 you can use lambda expression and simplify the above code as:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">KStream<String, String> source = builder.stream("streams-plaintext-input");
 | |
| KStream<String, String> words = source.flatMapValues(value -> Arrays.asList(value.split("\\W+")));</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         And finally we can write the word stream back into another Kafka topic, say <code>streams-linesplit-output</code>.
 | |
|         Again, these two steps can be concatenated as the following (assuming lambda expression is used):
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">KStream<String, String> source = builder.stream("streams-plaintext-input");
 | |
| source.flatMapValues(value -> Arrays.asList(value.split("\\W+")))
 | |
|       .to("streams-linesplit-output");</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         If we now describe this augmented topology as <code>System.out.println(topology.describe())</code>, we will get the following:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ mvn clean package
 | |
| $ mvn exec:java -Dexec.mainClass=myapps.LineSplit
 | |
| Sub-topologies:
 | |
|   Sub-topology: 0
 | |
|     Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-FLATMAPVALUES-0000000001
 | |
|     Processor: KSTREAM-FLATMAPVALUES-0000000001(stores: []) --> KSTREAM-SINK-0000000002 <-- KSTREAM-SOURCE-0000000000
 | |
|     Sink: KSTREAM-SINK-0000000002(topic: streams-linesplit-output) <-- KSTREAM-FLATMAPVALUES-0000000001
 | |
|   Global Stores:
 | |
|     none</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         As we can see above, a new processor node <code>KSTREAM-FLATMAPVALUES-0000000001</code> is injected into the topology between the original source and sink nodes.
 | |
|         It takes the source node as its parent and the sink node as its child.
 | |
|         In other words, each record fetched by the source node will first traverse to the newly added <code>KSTREAM-FLATMAPVALUES-0000000001</code> node to be processed,
 | |
|         and one or more new records will be generated as a result. They will continue traverse down to the sink node to be written back to Kafka.
 | |
|         Note this processor node is "stateless" as it is not associated with any stores (i.e. <code>(stores: [])</code>).
 | |
|     </p>
 | |
| 
 | |
|     <p>
 | |
|         The complete code looks like this (assuming lambda expression is used):
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">package myapps;
 | |
| 
 | |
| import org.apache.kafka.common.serialization.Serdes;
 | |
| import org.apache.kafka.streams.KafkaStreams;
 | |
| import org.apache.kafka.streams.StreamsBuilder;
 | |
| import org.apache.kafka.streams.StreamsConfig;
 | |
| import org.apache.kafka.streams.Topology;
 | |
| import org.apache.kafka.streams.kstream.KStream;
 | |
| 
 | |
| import java.util.Arrays;
 | |
| import java.util.Properties;
 | |
| import java.util.concurrent.CountDownLatch;
 | |
| 
 | |
| public class LineSplit {
 | |
| 
 | |
|     public static void main(String[] args) throws Exception {
 | |
|         Properties props = new Properties();
 | |
|         props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-linesplit");
 | |
|         props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
 | |
|         props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
 | |
|         props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
 | |
| 
 | |
|         final StreamsBuilder builder = new StreamsBuilder();
 | |
| 
 | |
|         KStream<String, String> source = builder.stream("streams-plaintext-input");
 | |
|         source.flatMapValues(value -> Arrays.asList(value.split("\\W+")))
 | |
|               .to("streams-linesplit-output");
 | |
| 
 | |
|         final Topology topology = builder.build();
 | |
|         final KafkaStreams streams = new KafkaStreams(topology, props);
 | |
|         final CountDownLatch latch = new CountDownLatch(1);
 | |
| 
 | |
|         // ... same as Pipe.java above
 | |
|     }
 | |
| }</code></pre>
 | |
| 
 | |
|     <h4><a id="tutorial_code_wordcount" href="#tutorial_code_wordcount">Writing a third Streams application: Wordcount</a></h4>
 | |
| 
 | |
|     <p>
 | |
|         Let's now take a step further to add some "stateful" computations to the topology by counting the occurrence of the words split from the source text stream.
 | |
|         Following similar steps let's create another program based on the <code>LineSplit.java</code> class:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">public class WordCount {
 | |
| 
 | |
|     public static void main(String[] args) throws Exception {
 | |
|         Properties props = new Properties();
 | |
|         props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount");
 | |
|         // ...
 | |
|     }
 | |
| }</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         In order to count the words we can first modify the <code>flatMapValues</code> operator to treat all of them as lower case (assuming lambda expression is used):
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">source.flatMapValues(new ValueMapper<String, Iterable<String>>() {
 | |
|     @Override
 | |
|     public Iterable<String> apply(String value) {
 | |
|         return Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+"));
 | |
|     }
 | |
| });</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         In order to do the counting aggregation we have to first specify that we want to key the stream on the value string, i.e. the lower cased word, with a <code>groupBy</code> operator.
 | |
|         This operator generate a new grouped stream, which can then be aggregated by a <code>count</code> operator, which generates a running count on each of the grouped keys:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">KTable<String, Long> counts =
 | |
| source.flatMapValues(new ValueMapper<String, Iterable<String>>() {
 | |
|             @Override
 | |
|             public Iterable<String> apply(String value) {
 | |
|                 return Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+"));
 | |
|             }
 | |
|         })
 | |
|       .groupBy(new KeyValueMapper<String, String, String>() {
 | |
|            @Override
 | |
|            public String apply(String key, String value) {
 | |
|                return value;
 | |
|            }
 | |
|         })
 | |
|       // Materialize the result into a KeyValueStore named "counts-store".
 | |
|       // The Materialized store is always of type <Bytes, byte[]> as this is the format of the inner most store.
 | |
|       .count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>> as("counts-store"));</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         Note that the <code>count</code> operator has a <code>Materialized</code> parameter that specifies that the
 | |
|         running count should be stored in a state store named <code>counts-store</code>.
 | |
|         This <code>counts-store</code> store can be queried in real-time, with details described in the <a href="/{{version}}/documentation/streams/developer-guide#streams_interactive_queries">Developer Manual</a>.
 | |
|     </p>
 | |
| 
 | |
|     <p>
 | |
|         We can also write the <code>counts</code> KTable's changelog stream back into another Kafka topic, say <code>streams-wordcount-output</code>.
 | |
|         Because the result is a changelog stream, the output topic <code>streams-wordcount-output</code> should be configured with log compaction enabled.
 | |
|         Note that this time the value type is no longer <code>String</code> but <code>Long</code>, so the default serialization classes are not viable for writing it to Kafka anymore.
 | |
|         We need to provide overridden serialization methods for <code>Long</code> types, otherwise a runtime exception will be thrown:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">counts.toStream().to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         Note that in order to read the changelog stream from topic <code>streams-wordcount-output</code>,
 | |
|         one needs to set the value deserialization as <code>org.apache.kafka.common.serialization.LongDeserializer</code>.
 | |
|         Details of this can be found in the <a href="/{{version}}/documentation/streams/quickstart">Play with a Streams Application</a> section.
 | |
|         Assuming lambda expression from JDK 8 can be used, the above code can be simplified as:
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">KStream<String, String> source = builder.stream("streams-plaintext-input");
 | |
| source.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")))
 | |
|       .groupBy((key, value) -> value)
 | |
|       .count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store"))
 | |
|       .toStream()
 | |
|       .to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         If we again describe this augmented topology as <code>System.out.println(topology.describe())</code>, we will get the following:
 | |
|     </p>
 | |
| 
 | |
|     <pre><code class="language-bash">$ mvn clean package
 | |
| $ mvn exec:java -Dexec.mainClass=myapps.WordCount
 | |
| Sub-topologies:
 | |
|   Sub-topology: 0
 | |
|     Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-FLATMAPVALUES-0000000001
 | |
|     Processor: KSTREAM-FLATMAPVALUES-0000000001(stores: []) --> KSTREAM-KEY-SELECT-0000000002 <-- KSTREAM-SOURCE-0000000000
 | |
|     Processor: KSTREAM-KEY-SELECT-0000000002(stores: []) --> KSTREAM-FILTER-0000000005 <-- KSTREAM-FLATMAPVALUES-0000000001
 | |
|     Processor: KSTREAM-FILTER-0000000005(stores: []) --> KSTREAM-SINK-0000000004 <-- KSTREAM-KEY-SELECT-0000000002
 | |
|     Sink: KSTREAM-SINK-0000000004(topic: counts-store-repartition) <-- KSTREAM-FILTER-0000000005
 | |
|   Sub-topology: 1
 | |
|     Source: KSTREAM-SOURCE-0000000006(topics: counts-store-repartition) --> KSTREAM-AGGREGATE-0000000003
 | |
|     Processor: KSTREAM-AGGREGATE-0000000003(stores: [counts-store]) --> KTABLE-TOSTREAM-0000000007 <-- KSTREAM-SOURCE-0000000006
 | |
|     Processor: KTABLE-TOSTREAM-0000000007(stores: []) --> KSTREAM-SINK-0000000008 <-- KSTREAM-AGGREGATE-0000000003
 | |
|     Sink: KSTREAM-SINK-0000000008(topic: streams-wordcount-output) <-- KTABLE-TOSTREAM-0000000007
 | |
| Global Stores:
 | |
|   none</code></pre>
 | |
| 
 | |
|     <p>
 | |
|         As we can see above, the topology now contains two disconnected sub-topologies.
 | |
|         The first sub-topology's sink node <code>KSTREAM-SINK-0000000004</code> will write to a repartition topic <code>counts-store-repartition</code>,
 | |
|         which will be read by the second sub-topology's source node <code>KSTREAM-SOURCE-0000000006</code>.
 | |
|         The repartition topic is used to "shuffle" the source stream by its aggregation key, which is in this case the value string.
 | |
|         In addition, inside the first sub-topology a stateless <code>KSTREAM-FILTER-0000000005</code> node is injected between the grouping <code>KSTREAM-KEY-SELECT-0000000002</code> node and the sink node to filter out any intermediate record whose aggregate key is empty.
 | |
|     </p>
 | |
|     <p>
 | |
|         In the second sub-topology, the aggregation node <code>KSTREAM-AGGREGATE-0000000003</code> is associated with a state store named <code>counts-store</code> (the name is specified by the user in the <code>count</code> operator).
 | |
|         Upon receiving each record from its upcoming stream source node, the aggregation processor will first query its associated <code>counts-store</code> store to get the current count for that key, augment by one, and then write the new count back to the store.
 | |
|         Each updated count for the key will also be piped downstream to the <code>KTABLE-TOSTREAM-0000000007</code> node, which interpret this update stream as a record stream before further piping to the sink node <code>KSTREAM-SINK-0000000008</code> for writing back to Kafka.
 | |
|     </p>
 | |
| 
 | |
|     <p>
 | |
|         The complete code looks like this (assuming lambda expression is used):
 | |
|     </p>
 | |
| 
 | |
|     <pre class="line-numbers"><code class="language-java">package myapps;
 | |
| 
 | |
| import org.apache.kafka.common.serialization.Serdes;
 | |
| import org.apache.kafka.common.utils.Bytes;
 | |
| import org.apache.kafka.streams.KafkaStreams;
 | |
| import org.apache.kafka.streams.StreamsBuilder;
 | |
| import org.apache.kafka.streams.StreamsConfig;
 | |
| import org.apache.kafka.streams.Topology;
 | |
| import org.apache.kafka.streams.kstream.KStream;
 | |
| import org.apache.kafka.streams.kstream.Materialized;
 | |
| import org.apache.kafka.streams.kstream.Produced;
 | |
| import org.apache.kafka.streams.state.KeyValueStore;
 | |
| 
 | |
| import java.util.Arrays;
 | |
| import java.util.Locale;
 | |
| import java.util.Properties;
 | |
| import java.util.concurrent.CountDownLatch;
 | |
| 
 | |
| public class WordCount {
 | |
| 
 | |
|     public static void main(String[] args) throws Exception {
 | |
|         Properties props = new Properties();
 | |
|         props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount");
 | |
|         props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
 | |
|         props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
 | |
|         props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
 | |
| 
 | |
|         final StreamsBuilder builder = new StreamsBuilder();
 | |
| 
 | |
|         KStream<String, String> source = builder.stream("streams-plaintext-input");
 | |
|         source.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")))
 | |
|               .groupBy((key, value) -> value)
 | |
|               .count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store"))
 | |
|               .toStream()
 | |
|               .to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));
 | |
| 
 | |
|         final Topology topology = builder.build();
 | |
|         final KafkaStreams streams = new KafkaStreams(topology, props);
 | |
|         final CountDownLatch latch = new CountDownLatch(1);
 | |
| 
 | |
|         // ... same as Pipe.java above
 | |
|     }
 | |
| }</code></pre>
 | |
| 
 | |
|     <div class="pagination">
 | |
|         <a href="/{{version}}/documentation/streams/quickstart" class="pagination__btn pagination__btn__prev">Previous</a>
 | |
|         <a href="/{{version}}/documentation/streams/core-concepts" class="pagination__btn pagination__btn__next">Next</a>
 | |
|     </div>
 | |
| </script>
 | |
| 
 | |
| <div class="p-quickstart-streams"></div>
 | |
| 
 | |
| <!--#include virtual="../../includes/_header.htm" -->
 | |
| <!--#include virtual="../../includes/_top.htm" -->
 | |
| <div class="content documentation">
 | |
|     <!--#include virtual="../../includes/_nav.htm" -->
 | |
|     <div class="right">
 | |
|         <!--//#include virtual="../../includes/_docs_banner.htm" -->
 | |
|         <ul class="breadcrumbs">
 | |
|             <li><a href="/documentation">Documentation</a></li>
 | |
|             <li><a href="/documentation/streams">Kafka Streams</a></li>
 | |
|         </ul>
 | |
|         <div class="p-content"></div>
 | |
|     </div>
 | |
| </div>
 | |
| <!--#include virtual="../../includes/_footer.htm" -->
 | |
| <script>
 | |
| $(function() {
 | |
|   // Show selected style on nav item
 | |
|   $('.b-nav__streams').addClass('selected');
 | |
| 
 | |
|      //sticky secondary nav
 | |
|           var $navbar = $(".sub-nav-sticky"),
 | |
|                y_pos = $navbar.offset().top,
 | |
|                height = $navbar.height();
 | |
|        
 | |
|            $(window).scroll(function() {
 | |
|                var scrollTop = $(window).scrollTop();
 | |
|            
 | |
|                if (scrollTop > y_pos - height) {
 | |
|                    $navbar.addClass("navbar-fixed")
 | |
|                } else if (scrollTop <= y_pos) {
 | |
|                    $navbar.removeClass("navbar-fixed")
 | |
|                }
 | |
|            });
 | |
| 
 | |
|   // Display docs subnav items
 | |
|   $('.b-nav__docs').parent().toggleClass('nav__item__with__subs--expanded');
 | |
| });
 | |
| </script>
 |