1. The latest version of Virtual Box from https://www.virtualbox.org/wiki/Downloads
2. [VMWare Fusion](https://www.vmware.com/products/fusion/) version 5 or greater as well as the appropriate [Vagrant VMWare Fusion provider](https://www.vagrantup.com/vmware)
3. [VMWare Workstation](https://www.vmware.com/products/workstation/) version 9 or greater as well as the [Vagrant VMWare Workstation provider](https://www.vagrantup.com/vmware)
4. [Parallels Desktop](https://www.parallels.com/products/desktop/) version 9 or greater as well as the [Vagrant Parallels provider](https://parallels.github.io/vagrant-parallels/)
3. Get or build a [binary release](../../getting-started-guides/binary_release.md)
### Setup
By default, the Vagrant setup will create a single kubernetes-master and 1 kubernetes-minion. Each VM will take 1 GB, so make sure you have at least 2GB to 4GB of free memory (plus appropriate free disk space). To start your local cluster, open a shell and run:
The `KUBERNETES_PROVIDER` environment variable tells all of the various cluster management scripts which variant to use. If you forget to set this, the assumption is you are running on Google Compute Engine.
If you installed more than one Vagrant provider, Kubernetes will usually pick the appropriate one. However, you can override which one Kubernetes will use by setting the [`VAGRANT_DEFAULT_PROVIDER`](https://docs.vagrantup.com/v2/providers/default.html) environment variable:
Vagrant will provision each machine in the cluster with all the necessary components to run Kubernetes. The initial setup can take a few minutes to complete on each machine.
By default, each VM in the cluster is running Fedora, and all of the Kubernetes services are installed into systemd.
### Interacting with your Kubernetes cluster with the `kube-*` scripts.
Alternatively to using the vagrant commands, you can also use the `cluster/kube-*.sh` scripts to interact with the vagrant based provider just like any other hosting platform for kubernetes.
All of these commands assume you have set `KUBERNETES_PROVIDER` appropriately:
When using the vagrant provider in Kubernetes, the `cluster/kubectl.sh` script will cache your credentials in a `~/.kubernetes_vagrant_auth` file so you will not be prompted for them in the future.
dbe79bf6e25b nginx:latest "nginx" 21 seconds ago Up 19 seconds k8s--mynginx.8c5b8a3a--7813c8bd_-_3ffe_-_11e4_-_9036_-_0800279696e1.etcd--7813c8bd_-_3ffe_-_11e4_-_9036_-_0800279696e1--fcfa837f
By default the Vagrantfile will download the box from S3. You can change this (and cache the box locally) by providing a name and an alternate URL when calling `kube-up.sh`
If this is your first time creating the cluster, the kubelet on each minion schedules a number of docker pull requests to fetch prerequisite images. This can take some time and as a result may delay your initial pod getting provisioned.
Are you sure there was no build error? After running `$ vagrant provision`, scroll up and ensure that each Salt state was completed successfully on each box in the cluster.
It's very likely you see a build error due to an error in your source files!
Are you sure you built a release first? Did you install `net-tools`? For more clues, login to one of the minions (`vagrant ssh minion-1`) and inspect the salt minion log (`sudo cat /var/log/salt/minion`).
You can control the number of minions that are instantiated via the environment variable `NUM_MINIONS` on your host machine. If you plan to work with replicas, we strongly encourage you to work with enough minions to satisfy your largest intended replica size. If you do not plan to work with replicas, you can save some system resources by running with a single minion. You do this, by setting `NUM_MINIONS` to 1 like so: