| 
									
										
										
										
											2021-04-19 03:41:13 +08:00
										 |  |  | // Copyright (c) 2015-2021 MinIO, Inc.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // This file is part of MinIO Object Storage stack
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // This program is free software: you can redistribute it and/or modify
 | 
					
						
							|  |  |  | // it under the terms of the GNU Affero General Public License as published by
 | 
					
						
							|  |  |  | // the Free Software Foundation, either version 3 of the License, or
 | 
					
						
							|  |  |  | // (at your option) any later version.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // This program is distributed in the hope that it will be useful
 | 
					
						
							|  |  |  | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					
						
							|  |  |  | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					
						
							|  |  |  | // GNU Affero General Public License for more details.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // You should have received a copy of the GNU Affero General Public License
 | 
					
						
							|  |  |  | // along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | package cmd | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import ( | 
					
						
							| 
									
										
										
										
											2020-06-18 05:49:26 +08:00
										 |  |  | 	"context" | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | 	"errors" | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-02 05:59:40 +08:00
										 |  |  | 	"github.com/minio/minio/internal/dsync" | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | 	"github.com/minio/minio/internal/grid" | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // lockRESTClient is authenticable lock REST client
 | 
					
						
							|  |  |  | type lockRESTClient struct { | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | 	connection *grid.Connection | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // IsOnline - returns whether REST client failed to connect or not.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) IsOnline() bool { | 
					
						
							|  |  |  | 	return c.connection.State() == grid.StateConnected | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-09 03:32:32 +08:00
										 |  |  | // Not a local locker
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) IsLocal() bool { | 
					
						
							| 
									
										
										
										
											2020-10-09 03:32:32 +08:00
										 |  |  | 	return false | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | // Close - marks the client as closed.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) Close() error { | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | 	return nil | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | // String - returns the remote host of the connection.
 | 
					
						
							|  |  |  | func (c *lockRESTClient) String() string { | 
					
						
							|  |  |  | 	return c.connection.Remote | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | func (c *lockRESTClient) call(ctx context.Context, h *grid.SingleHandler[*dsync.LockArgs, *dsync.LockResp], args *dsync.LockArgs) (ok bool, err error) { | 
					
						
							|  |  |  | 	r, err := h.Call(ctx, c.connection, args) | 
					
						
							| 
									
										
										
										
											2021-10-01 02:53:01 +08:00
										 |  |  | 	if err != nil { | 
					
						
							|  |  |  | 		return false, err | 
					
						
							| 
									
										
										
										
											2020-02-21 13:59:57 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | 	defer h.PutResponse(r) | 
					
						
							|  |  |  | 	ok = r.Code == dsync.RespOK | 
					
						
							|  |  |  | 	switch r.Code { | 
					
						
							|  |  |  | 	case dsync.RespLockConflict, dsync.RespLockNotFound, dsync.RespOK: | 
					
						
							|  |  |  | 	// no error
 | 
					
						
							|  |  |  | 	case dsync.RespLockNotInitialized: | 
					
						
							|  |  |  | 		err = errLockNotInitialized | 
					
						
							| 
									
										
										
										
											2019-08-29 07:12:57 +08:00
										 |  |  | 	default: | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | 		err = errors.New(r.Err) | 
					
						
							| 
									
										
										
										
											2019-08-29 07:12:57 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | 	return ok, err | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // RLock calls read lock REST API.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) RLock(ctx context.Context, args dsync.LockArgs) (reply bool, err error) { | 
					
						
							|  |  |  | 	return c.call(ctx, lockRPCRLock, &args) | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Lock calls lock REST API.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) Lock(ctx context.Context, args dsync.LockArgs) (reply bool, err error) { | 
					
						
							|  |  |  | 	return c.call(ctx, lockRPCLock, &args) | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // RUnlock calls read unlock REST API.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) RUnlock(ctx context.Context, args dsync.LockArgs) (reply bool, err error) { | 
					
						
							|  |  |  | 	return c.call(ctx, lockRPCRUnlock, &args) | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | // Refresh calls Refresh REST API.
 | 
					
						
							|  |  |  | func (c *lockRESTClient) Refresh(ctx context.Context, args dsync.LockArgs) (reply bool, err error) { | 
					
						
							|  |  |  | 	return c.call(ctx, lockRPCRefresh, &args) | 
					
						
							| 
									
										
										
										
											2021-03-04 10:36:43 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | // Unlock calls write unlock RPC.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) Unlock(ctx context.Context, args dsync.LockArgs) (reply bool, err error) { | 
					
						
							|  |  |  | 	return c.call(ctx, lockRPCUnlock, &args) | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-26 02:01:27 +08:00
										 |  |  | // ForceUnlock calls force unlock handler to forcibly unlock an active lock.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func (c *lockRESTClient) ForceUnlock(ctx context.Context, args dsync.LockArgs) (reply bool, err error) { | 
					
						
							|  |  |  | 	return c.call(ctx, lockRPCForceUnlock, &args) | 
					
						
							| 
									
										
										
										
											2021-01-26 02:01:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-11-14 04:17:45 +08:00
										 |  |  | func newLockAPI(endpoint Endpoint) dsync.NetLocker { | 
					
						
							|  |  |  | 	if endpoint.IsLocal { | 
					
						
							| 
									
										
										
										
											2020-12-10 23:28:37 +08:00
										 |  |  | 		return globalLockServer | 
					
						
							| 
									
										
										
										
											2019-11-14 04:17:45 +08:00
										 |  |  | 	} | 
					
						
							|  |  |  | 	return newlockRESTClient(endpoint) | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Returns a lock rest client.
 | 
					
						
							| 
									
										
											  
											
												perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response
	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}
type Response struct {
	Msg []byte
	Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
											
										 
											2023-11-21 09:09:35 +08:00
										 |  |  | func newlockRESTClient(ep Endpoint) *lockRESTClient { | 
					
						
							|  |  |  | 	return &lockRESTClient{globalGrid.Load().Connection(ep.GridHost())} | 
					
						
							| 
									
										
										
										
											2019-04-18 14:16:27 +08:00
										 |  |  | } |