mirror of https://github.com/minio/minio.git
				
				
				
			
		
			
				
	
	
		
			842 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			842 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Go
		
	
	
	
| /*
 | |
|  * MinIO Cloud Storage, (C) 2017-2020 MinIO, Inc.
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| package cmd
 | |
| 
 | |
| import (
 | |
| 	"bufio"
 | |
| 	"crypto/hmac"
 | |
| 	"crypto/rand"
 | |
| 	"crypto/subtle"
 | |
| 	"encoding/binary"
 | |
| 	"encoding/hex"
 | |
| 	"errors"
 | |
| 	"io"
 | |
| 	"net/http"
 | |
| 	"path"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 
 | |
| 	"github.com/minio/minio/cmd/crypto"
 | |
| 	xhttp "github.com/minio/minio/cmd/http"
 | |
| 	"github.com/minio/minio/cmd/logger"
 | |
| 	sha256 "github.com/minio/sha256-simd"
 | |
| 	"github.com/minio/sio"
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	// AWS errors for invalid SSE-C requests.
 | |
| 	errEncryptedObject      = errors.New("The object was stored using a form of SSE")
 | |
| 	errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied
 | |
| 	errKMSNotConfigured     = errors.New("KMS not configured for a server side encrypted object")
 | |
| 	// Additional MinIO errors for SSE-C requests.
 | |
| 	errObjectTampered = errors.New("The requested object was modified and may be compromised")
 | |
| 	// error returned when invalid encryption parameters are specified
 | |
| 	errInvalidEncryptionParameters = errors.New("The encryption parameters are not applicable to this object")
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
 | |
| 	// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
 | |
| 	SSECustomerKeySize = 32
 | |
| 
 | |
| 	// SSEIVSize is the size of the IV data
 | |
| 	SSEIVSize = 32 // 32 bytes
 | |
| 
 | |
| 	// SSEDAREPackageBlockSize - SSE dare package block size.
 | |
| 	SSEDAREPackageBlockSize = 64 * 1024 // 64KiB bytes
 | |
| 
 | |
| 	// SSEDAREPackageMetaSize - SSE dare package meta padding bytes.
 | |
| 	SSEDAREPackageMetaSize = 32 // 32 bytes
 | |
| 
 | |
| )
 | |
| 
 | |
| // isEncryptedMultipart returns true if the current object is
 | |
| // uploaded by the user using multipart mechanism:
 | |
| // initiate new multipart, upload part, complete upload
 | |
| func isEncryptedMultipart(objInfo ObjectInfo) bool {
 | |
| 	if len(objInfo.Parts) == 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 	if !crypto.IsMultiPart(objInfo.UserDefined) {
 | |
| 		return false
 | |
| 	}
 | |
| 	for _, part := range objInfo.Parts {
 | |
| 		_, err := sio.DecryptedSize(uint64(part.Size))
 | |
| 		if err != nil {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	// Further check if this object is uploaded using multipart mechanism
 | |
| 	// by the user and it is not about Erasure internally splitting the
 | |
| 	// object into parts in PutObject()
 | |
| 	return !(objInfo.backendType == BackendErasure && len(objInfo.ETag) == 32)
 | |
| }
 | |
| 
 | |
| // ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request.
 | |
| // It returns the client provided key on success.
 | |
| func ParseSSECopyCustomerRequest(h http.Header, metadata map[string]string) (key []byte, err error) {
 | |
| 	if crypto.S3.IsEncrypted(metadata) && crypto.SSECopy.IsRequested(h) {
 | |
| 		return nil, crypto.ErrIncompatibleEncryptionMethod
 | |
| 	}
 | |
| 	k, err := crypto.SSECopy.ParseHTTP(h)
 | |
| 	return k[:], err
 | |
| }
 | |
| 
 | |
| // ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
 | |
| // It returns the client provided key on success.
 | |
| func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
 | |
| 	return ParseSSECustomerHeader(r.Header)
 | |
| }
 | |
| 
 | |
| // ParseSSECustomerHeader parses the SSE-C header fields and returns
 | |
| // the client provided key on success.
 | |
| func ParseSSECustomerHeader(header http.Header) (key []byte, err error) {
 | |
| 	if crypto.S3.IsRequested(header) && crypto.SSEC.IsRequested(header) {
 | |
| 		return key, crypto.ErrIncompatibleEncryptionMethod
 | |
| 	}
 | |
| 
 | |
| 	k, err := crypto.SSEC.ParseHTTP(header)
 | |
| 	return k[:], err
 | |
| }
 | |
| 
 | |
| // This function rotates old to new key.
 | |
| func rotateKey(oldKey []byte, newKey []byte, bucket, object string, metadata map[string]string) error {
 | |
| 	switch {
 | |
| 	default:
 | |
| 		return errObjectTampered
 | |
| 	case crypto.SSEC.IsEncrypted(metadata):
 | |
| 		sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 
 | |
| 		var objectKey crypto.ObjectKey
 | |
| 		var extKey [32]byte
 | |
| 		copy(extKey[:], oldKey)
 | |
| 		if err = objectKey.Unseal(extKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
 | |
| 			if subtle.ConstantTimeCompare(oldKey, newKey) == 1 {
 | |
| 				return errInvalidSSEParameters // AWS returns special error for equal but invalid keys.
 | |
| 			}
 | |
| 			return crypto.ErrInvalidCustomerKey // To provide strict AWS S3 compatibility we return: access denied.
 | |
| 
 | |
| 		}
 | |
| 		if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && sealedKey.Algorithm == crypto.SealAlgorithm {
 | |
| 			return nil // don't rotate on equal keys if seal algorithm is latest
 | |
| 		}
 | |
| 		copy(extKey[:], newKey)
 | |
| 		sealedKey = objectKey.Seal(extKey, sealedKey.IV, crypto.SSEC.String(), bucket, object)
 | |
| 		crypto.SSEC.CreateMetadata(metadata, sealedKey)
 | |
| 		return nil
 | |
| 	case crypto.S3.IsEncrypted(metadata):
 | |
| 		if GlobalKMS == nil {
 | |
| 			return errKMSNotConfigured
 | |
| 		}
 | |
| 		keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata)
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 		oldKey, err := GlobalKMS.UnsealKey(keyID, kmsKey, crypto.Context{bucket: path.Join(bucket, object)})
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 		var objectKey crypto.ObjectKey
 | |
| 		if err = objectKey.Unseal(oldKey, sealedKey, crypto.S3.String(), bucket, object); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 
 | |
| 		newKey, encKey, err := GlobalKMS.GenerateKey(GlobalKMS.DefaultKeyID(), crypto.Context{bucket: path.Join(bucket, object)})
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 		sealedKey = objectKey.Seal(newKey, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
 | |
| 		crypto.S3.CreateMetadata(metadata, GlobalKMS.DefaultKeyID(), encKey, sealedKey)
 | |
| 		return nil
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func newEncryptMetadata(key []byte, bucket, object string, metadata map[string]string, sseS3 bool) (crypto.ObjectKey, error) {
 | |
| 	var sealedKey crypto.SealedKey
 | |
| 	if sseS3 {
 | |
| 		if GlobalKMS == nil {
 | |
| 			return crypto.ObjectKey{}, errKMSNotConfigured
 | |
| 		}
 | |
| 		key, encKey, err := GlobalKMS.GenerateKey(GlobalKMS.DefaultKeyID(), crypto.Context{bucket: path.Join(bucket, object)})
 | |
| 		if err != nil {
 | |
| 			return crypto.ObjectKey{}, err
 | |
| 		}
 | |
| 
 | |
| 		objectKey := crypto.GenerateKey(key, rand.Reader)
 | |
| 		sealedKey = objectKey.Seal(key, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
 | |
| 		crypto.S3.CreateMetadata(metadata, GlobalKMS.DefaultKeyID(), encKey, sealedKey)
 | |
| 		return objectKey, nil
 | |
| 	}
 | |
| 	var extKey [32]byte
 | |
| 	copy(extKey[:], key)
 | |
| 	objectKey := crypto.GenerateKey(extKey, rand.Reader)
 | |
| 	sealedKey = objectKey.Seal(extKey, crypto.GenerateIV(rand.Reader), crypto.SSEC.String(), bucket, object)
 | |
| 	crypto.SSEC.CreateMetadata(metadata, sealedKey)
 | |
| 	return objectKey, nil
 | |
| }
 | |
| 
 | |
| func newEncryptReader(content io.Reader, key []byte, bucket, object string, metadata map[string]string, sseS3 bool) (io.Reader, crypto.ObjectKey, error) {
 | |
| 	objectEncryptionKey, err := newEncryptMetadata(key, bucket, object, metadata, sseS3)
 | |
| 	if err != nil {
 | |
| 		return nil, crypto.ObjectKey{}, err
 | |
| 	}
 | |
| 
 | |
| 	reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey[:], MinVersion: sio.Version20})
 | |
| 	if err != nil {
 | |
| 		return nil, crypto.ObjectKey{}, crypto.ErrInvalidCustomerKey
 | |
| 	}
 | |
| 
 | |
| 	return reader, objectEncryptionKey, nil
 | |
| }
 | |
| 
 | |
| // set new encryption metadata from http request headers for SSE-C and generated key from KMS in the case of
 | |
| // SSE-S3
 | |
| func setEncryptionMetadata(r *http.Request, bucket, object string, metadata map[string]string) (err error) {
 | |
| 	var (
 | |
| 		key []byte
 | |
| 	)
 | |
| 	if crypto.SSEC.IsRequested(r.Header) {
 | |
| 		key, err = ParseSSECustomerRequest(r)
 | |
| 		if err != nil {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	_, err = newEncryptMetadata(key, bucket, object, metadata, crypto.S3.IsRequested(r.Header))
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // EncryptRequest takes the client provided content and encrypts the data
 | |
| // with the client provided key. It also marks the object as client-side-encrypted
 | |
| // and sets the correct headers.
 | |
| func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, crypto.ObjectKey, error) {
 | |
| 	if crypto.S3.IsRequested(r.Header) && crypto.SSEC.IsRequested(r.Header) {
 | |
| 		return nil, crypto.ObjectKey{}, crypto.ErrIncompatibleEncryptionMethod
 | |
| 	}
 | |
| 	if r.ContentLength > encryptBufferThreshold {
 | |
| 		// The encryption reads in blocks of 64KB.
 | |
| 		// We add a buffer on bigger files to reduce the number of syscalls upstream.
 | |
| 		content = bufio.NewReaderSize(content, encryptBufferSize)
 | |
| 	}
 | |
| 
 | |
| 	var key []byte
 | |
| 	if crypto.SSEC.IsRequested(r.Header) {
 | |
| 		var err error
 | |
| 		key, err = ParseSSECustomerRequest(r)
 | |
| 		if err != nil {
 | |
| 			return nil, crypto.ObjectKey{}, err
 | |
| 		}
 | |
| 	}
 | |
| 	return newEncryptReader(content, key, bucket, object, metadata, crypto.S3.IsRequested(r.Header))
 | |
| }
 | |
| 
 | |
| func decryptObjectInfo(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
 | |
| 	switch {
 | |
| 	default:
 | |
| 		return nil, errObjectTampered
 | |
| 	case crypto.S3.IsEncrypted(metadata) && isCacheEncrypted(metadata):
 | |
| 		if globalCacheKMS == nil {
 | |
| 			return nil, errKMSNotConfigured
 | |
| 		}
 | |
| 		keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		extKey, err := globalCacheKMS.UnsealKey(keyID, kmsKey, crypto.Context{bucket: path.Join(bucket, object)})
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		var objectKey crypto.ObjectKey
 | |
| 		if err = objectKey.Unseal(extKey, sealedKey, crypto.S3.String(), bucket, object); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		return objectKey[:], nil
 | |
| 	case crypto.S3.IsEncrypted(metadata):
 | |
| 		if GlobalKMS == nil {
 | |
| 			return nil, errKMSNotConfigured
 | |
| 		}
 | |
| 		keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata)
 | |
| 
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		extKey, err := GlobalKMS.UnsealKey(keyID, kmsKey, crypto.Context{bucket: path.Join(bucket, object)})
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		var objectKey crypto.ObjectKey
 | |
| 		if err = objectKey.Unseal(extKey, sealedKey, crypto.S3.String(), bucket, object); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		return objectKey[:], nil
 | |
| 	case crypto.SSEC.IsEncrypted(metadata):
 | |
| 		var extKey [32]byte
 | |
| 		copy(extKey[:], key)
 | |
| 		sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		var objectKey crypto.ObjectKey
 | |
| 		if err = objectKey.Unseal(extKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		return objectKey[:], nil
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Adding support for reader based interface
 | |
| 
 | |
| // DecryptRequestWithSequenceNumberR - same as
 | |
| // DecryptRequestWithSequenceNumber but with a reader
 | |
| func DecryptRequestWithSequenceNumberR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
 | |
| 	if crypto.S3.IsEncrypted(metadata) {
 | |
| 		return newDecryptReader(client, nil, bucket, object, seqNumber, metadata)
 | |
| 	}
 | |
| 
 | |
| 	key, err := ParseSSECustomerHeader(h)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
 | |
| }
 | |
| 
 | |
| // DecryptCopyRequestR - same as DecryptCopyRequest, but with a
 | |
| // Reader
 | |
| func DecryptCopyRequestR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
 | |
| 	var (
 | |
| 		key []byte
 | |
| 		err error
 | |
| 	)
 | |
| 	if crypto.SSECopy.IsRequested(h) {
 | |
| 		key, err = ParseSSECopyCustomerRequest(h, metadata)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 	}
 | |
| 	return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
 | |
| }
 | |
| 
 | |
| func newDecryptReader(client io.Reader, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
 | |
| 	objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return newDecryptReaderWithObjectKey(client, objectEncryptionKey, seqNumber)
 | |
| }
 | |
| 
 | |
| func newDecryptReaderWithObjectKey(client io.Reader, objectEncryptionKey []byte, seqNumber uint32) (io.Reader, error) {
 | |
| 	reader, err := sio.DecryptReader(client, sio.Config{
 | |
| 		Key:            objectEncryptionKey,
 | |
| 		SequenceNumber: seqNumber,
 | |
| 	})
 | |
| 	if err != nil {
 | |
| 		return nil, crypto.ErrInvalidCustomerKey
 | |
| 	}
 | |
| 	return reader, nil
 | |
| }
 | |
| 
 | |
| // DecryptBlocksRequestR - same as DecryptBlocksRequest but with a
 | |
| // reader
 | |
| func DecryptBlocksRequestR(inputReader io.Reader, h http.Header, offset,
 | |
| 	length int64, seqNumber uint32, partStart int, oi ObjectInfo, copySource bool) (
 | |
| 	io.Reader, error) {
 | |
| 
 | |
| 	bucket, object := oi.Bucket, oi.Name
 | |
| 	// Single part case
 | |
| 	if !isEncryptedMultipart(oi) {
 | |
| 		var reader io.Reader
 | |
| 		var err error
 | |
| 		if copySource {
 | |
| 			reader, err = DecryptCopyRequestR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
 | |
| 		} else {
 | |
| 			reader, err = DecryptRequestWithSequenceNumberR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
 | |
| 		}
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		return reader, nil
 | |
| 	}
 | |
| 
 | |
| 	partDecRelOffset := int64(seqNumber) * SSEDAREPackageBlockSize
 | |
| 	partEncRelOffset := int64(seqNumber) * (SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
 | |
| 
 | |
| 	w := &DecryptBlocksReader{
 | |
| 		reader:            inputReader,
 | |
| 		startSeqNum:       seqNumber,
 | |
| 		partDecRelOffset:  partDecRelOffset,
 | |
| 		partEncRelOffset:  partEncRelOffset,
 | |
| 		parts:             oi.Parts,
 | |
| 		partIndex:         partStart,
 | |
| 		header:            h,
 | |
| 		bucket:            bucket,
 | |
| 		object:            object,
 | |
| 		customerKeyHeader: h.Get(xhttp.AmzServerSideEncryptionCustomerKey),
 | |
| 		copySource:        copySource,
 | |
| 		metadata:          cloneMSS(oi.UserDefined),
 | |
| 	}
 | |
| 
 | |
| 	if w.copySource {
 | |
| 		w.customerKeyHeader = h.Get(xhttp.AmzServerSideEncryptionCopyCustomerKey)
 | |
| 	}
 | |
| 
 | |
| 	if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return w, nil
 | |
| }
 | |
| 
 | |
| // DecryptBlocksReader - decrypts multipart parts, while implementing
 | |
| // a io.Reader compatible interface.
 | |
| type DecryptBlocksReader struct {
 | |
| 	// Source of the encrypted content that will be decrypted
 | |
| 	reader io.Reader
 | |
| 	// Current decrypter for the current encrypted data block
 | |
| 	decrypter io.Reader
 | |
| 	// Start sequence number
 | |
| 	startSeqNum uint32
 | |
| 	// Current part index
 | |
| 	partIndex int
 | |
| 	// Parts information
 | |
| 	parts          []ObjectPartInfo
 | |
| 	header         http.Header
 | |
| 	bucket, object string
 | |
| 	metadata       map[string]string
 | |
| 
 | |
| 	partDecRelOffset, partEncRelOffset int64
 | |
| 
 | |
| 	copySource bool
 | |
| 	// Customer Key
 | |
| 	customerKeyHeader string
 | |
| }
 | |
| 
 | |
| func (d *DecryptBlocksReader) buildDecrypter(partID int) error {
 | |
| 	m := cloneMSS(d.metadata)
 | |
| 	// Initialize the first decrypter; new decrypters will be
 | |
| 	// initialized in Read() operation as needed.
 | |
| 	var key []byte
 | |
| 	var err error
 | |
| 	if d.copySource {
 | |
| 		if crypto.SSEC.IsEncrypted(d.metadata) {
 | |
| 			d.header.Set(xhttp.AmzServerSideEncryptionCopyCustomerKey, d.customerKeyHeader)
 | |
| 			key, err = ParseSSECopyCustomerRequest(d.header, d.metadata)
 | |
| 		}
 | |
| 	} else {
 | |
| 		if crypto.SSEC.IsEncrypted(d.metadata) {
 | |
| 			d.header.Set(xhttp.AmzServerSideEncryptionCustomerKey, d.customerKeyHeader)
 | |
| 			key, err = ParseSSECustomerHeader(d.header)
 | |
| 		}
 | |
| 	}
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	objectEncryptionKey, err := decryptObjectInfo(key, d.bucket, d.object, m)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	var partIDbin [4]byte
 | |
| 	binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID
 | |
| 
 | |
| 	mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key
 | |
| 	mac.Write(partIDbin[:])
 | |
| 	partEncryptionKey := mac.Sum(nil)
 | |
| 
 | |
| 	// Limit the reader, so the decryptor doesnt receive bytes
 | |
| 	// from the next part (different DARE stream)
 | |
| 	encLenToRead := d.parts[d.partIndex].Size - d.partEncRelOffset
 | |
| 	decrypter, err := newDecryptReaderWithObjectKey(io.LimitReader(d.reader, encLenToRead), partEncryptionKey, d.startSeqNum)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	d.decrypter = decrypter
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (d *DecryptBlocksReader) Read(p []byte) (int, error) {
 | |
| 	var err error
 | |
| 	var n1 int
 | |
| 	decPartSize, _ := sio.DecryptedSize(uint64(d.parts[d.partIndex].Size))
 | |
| 	unreadPartLen := int64(decPartSize) - d.partDecRelOffset
 | |
| 	if int64(len(p)) < unreadPartLen {
 | |
| 		n1, err = d.decrypter.Read(p)
 | |
| 		if err != nil {
 | |
| 			return 0, err
 | |
| 		}
 | |
| 		d.partDecRelOffset += int64(n1)
 | |
| 	} else {
 | |
| 		n1, err = io.ReadFull(d.decrypter, p[:unreadPartLen])
 | |
| 		if err != nil {
 | |
| 			return 0, err
 | |
| 		}
 | |
| 
 | |
| 		// We should now proceed to next part, reset all
 | |
| 		// values appropriately.
 | |
| 		d.partEncRelOffset = 0
 | |
| 		d.partDecRelOffset = 0
 | |
| 		d.startSeqNum = 0
 | |
| 
 | |
| 		d.partIndex++
 | |
| 		if d.partIndex == len(d.parts) {
 | |
| 			return n1, io.EOF
 | |
| 		}
 | |
| 
 | |
| 		err = d.buildDecrypter(d.parts[d.partIndex].Number)
 | |
| 		if err != nil {
 | |
| 			return 0, err
 | |
| 		}
 | |
| 
 | |
| 		n1, err = d.decrypter.Read(p[n1:])
 | |
| 		if err != nil {
 | |
| 			return 0, err
 | |
| 		}
 | |
| 
 | |
| 		d.partDecRelOffset += int64(n1)
 | |
| 	}
 | |
| 	return len(p), nil
 | |
| }
 | |
| 
 | |
| // DecryptedSize returns the size of the object after decryption in bytes.
 | |
| // It returns an error if the object is not encrypted or marked as encrypted
 | |
| // but has an invalid size.
 | |
| func (o *ObjectInfo) DecryptedSize() (int64, error) {
 | |
| 	if !crypto.IsEncrypted(o.UserDefined) {
 | |
| 		return 0, errors.New("Cannot compute decrypted size of an unencrypted object")
 | |
| 	}
 | |
| 	if !isEncryptedMultipart(*o) {
 | |
| 		size, err := sio.DecryptedSize(uint64(o.Size))
 | |
| 		if err != nil {
 | |
| 			err = errObjectTampered // assign correct error type
 | |
| 		}
 | |
| 		return int64(size), err
 | |
| 	}
 | |
| 
 | |
| 	var size int64
 | |
| 	for _, part := range o.Parts {
 | |
| 		partSize, err := sio.DecryptedSize(uint64(part.Size))
 | |
| 		if err != nil {
 | |
| 			return 0, errObjectTampered
 | |
| 		}
 | |
| 		size += int64(partSize)
 | |
| 	}
 | |
| 	return size, nil
 | |
| }
 | |
| 
 | |
| // DecryptETag decrypts the ETag that is part of given object
 | |
| // with the given object encryption key.
 | |
| //
 | |
| // However, DecryptETag does not try to decrypt the ETag if
 | |
| // it consists of a 128 bit hex value (32 hex chars) and exactly
 | |
| // one '-' followed by a 32-bit number.
 | |
| // This special case adresses randomly-generated ETags generated
 | |
| // by the MinIO server when running in non-compat mode. These
 | |
| // random ETags are not encrypt.
 | |
| //
 | |
| // Calling DecryptETag with a non-randomly generated ETag will
 | |
| // fail.
 | |
| func DecryptETag(key crypto.ObjectKey, object ObjectInfo) (string, error) {
 | |
| 	if n := strings.Count(object.ETag, "-"); n > 0 {
 | |
| 		if n != 1 {
 | |
| 			return "", errObjectTampered
 | |
| 		}
 | |
| 		i := strings.IndexByte(object.ETag, '-')
 | |
| 		if len(object.ETag[:i]) != 32 {
 | |
| 			return "", errObjectTampered
 | |
| 		}
 | |
| 		if _, err := hex.DecodeString(object.ETag[:32]); err != nil {
 | |
| 			return "", errObjectTampered
 | |
| 		}
 | |
| 		if _, err := strconv.ParseInt(object.ETag[i+1:], 10, 32); err != nil {
 | |
| 			return "", errObjectTampered
 | |
| 		}
 | |
| 		return object.ETag, nil
 | |
| 	}
 | |
| 
 | |
| 	etag, err := hex.DecodeString(object.ETag)
 | |
| 	if err != nil {
 | |
| 		return "", err
 | |
| 	}
 | |
| 	etag, err = key.UnsealETag(etag)
 | |
| 	if err != nil {
 | |
| 		return "", err
 | |
| 	}
 | |
| 	return hex.EncodeToString(etag), nil
 | |
| }
 | |
| 
 | |
| // For encrypted objects, the ETag sent by client if available
 | |
| // is stored in encrypted form in the backend. Decrypt the ETag
 | |
| // if ETag was previously encrypted.
 | |
| func getDecryptedETag(headers http.Header, objInfo ObjectInfo, copySource bool) (decryptedETag string) {
 | |
| 	var (
 | |
| 		key [32]byte
 | |
| 		err error
 | |
| 	)
 | |
| 	// If ETag is contentMD5Sum return it as is.
 | |
| 	if len(objInfo.ETag) == 32 {
 | |
| 		return objInfo.ETag
 | |
| 	}
 | |
| 
 | |
| 	if crypto.IsMultiPart(objInfo.UserDefined) {
 | |
| 		return objInfo.ETag
 | |
| 	}
 | |
| 
 | |
| 	if crypto.SSECopy.IsRequested(headers) {
 | |
| 		key, err = crypto.SSECopy.ParseHTTP(headers)
 | |
| 		if err != nil {
 | |
| 			return objInfo.ETag
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// As per AWS S3 Spec, ETag for SSE-C encrypted objects need not be MD5Sum of the data.
 | |
| 	// Since server side copy with same source and dest just replaces the ETag, we save
 | |
| 	// encrypted content MD5Sum as ETag for both SSE-C and SSE-S3, we standardize the ETag
 | |
| 	// encryption across SSE-C and SSE-S3, and only return last 32 bytes for SSE-C
 | |
| 	if crypto.SSEC.IsEncrypted(objInfo.UserDefined) && !copySource {
 | |
| 		return objInfo.ETag[len(objInfo.ETag)-32:]
 | |
| 	}
 | |
| 
 | |
| 	objectEncryptionKey, err := decryptObjectInfo(key[:], objInfo.Bucket, objInfo.Name, objInfo.UserDefined)
 | |
| 	if err != nil {
 | |
| 		return objInfo.ETag
 | |
| 	}
 | |
| 	return tryDecryptETag(objectEncryptionKey, objInfo.ETag, false)
 | |
| }
 | |
| 
 | |
| // helper to decrypt Etag given object encryption key and encrypted ETag
 | |
| func tryDecryptETag(key []byte, encryptedETag string, ssec bool) string {
 | |
| 	// ETag for SSE-C encrypted objects need not be content MD5Sum.While encrypted
 | |
| 	// md5sum is stored internally, return just the last 32 bytes of hex-encoded and
 | |
| 	// encrypted md5sum string for SSE-C
 | |
| 	if ssec {
 | |
| 		return encryptedETag[len(encryptedETag)-32:]
 | |
| 	}
 | |
| 	var objectKey crypto.ObjectKey
 | |
| 	copy(objectKey[:], key)
 | |
| 	encBytes, err := hex.DecodeString(encryptedETag)
 | |
| 	if err != nil {
 | |
| 		return encryptedETag
 | |
| 	}
 | |
| 	etagBytes, err := objectKey.UnsealETag(encBytes)
 | |
| 	if err != nil {
 | |
| 		return encryptedETag
 | |
| 	}
 | |
| 	return hex.EncodeToString(etagBytes)
 | |
| }
 | |
| 
 | |
| // GetDecryptedRange - To decrypt the range (off, length) of the
 | |
| // decrypted object stream, we need to read the range (encOff,
 | |
| // encLength) of the encrypted object stream to decrypt it, and
 | |
| // compute skipLen, the number of bytes to skip in the beginning of
 | |
| // the encrypted range.
 | |
| //
 | |
| // In addition we also compute the object part number for where the
 | |
| // requested range starts, along with the DARE sequence number within
 | |
| // that part. For single part objects, the partStart will be 0.
 | |
| func (o *ObjectInfo) GetDecryptedRange(rs *HTTPRangeSpec) (encOff, encLength, skipLen int64, seqNumber uint32, partStart int, err error) {
 | |
| 	if !crypto.IsEncrypted(o.UserDefined) {
 | |
| 		err = errors.New("Object is not encrypted")
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if rs == nil {
 | |
| 		// No range, so offsets refer to the whole object.
 | |
| 		return 0, o.Size, 0, 0, 0, nil
 | |
| 	}
 | |
| 
 | |
| 	// Assemble slice of (decrypted) part sizes in `sizes`
 | |
| 	var sizes []int64
 | |
| 	var decObjSize int64 // decrypted total object size
 | |
| 	if isEncryptedMultipart(*o) {
 | |
| 		sizes = make([]int64, len(o.Parts))
 | |
| 		for i, part := range o.Parts {
 | |
| 			var partSize uint64
 | |
| 			partSize, err = sio.DecryptedSize(uint64(part.Size))
 | |
| 			if err != nil {
 | |
| 				err = errObjectTampered
 | |
| 				return
 | |
| 			}
 | |
| 			sizes[i] = int64(partSize)
 | |
| 			decObjSize += int64(partSize)
 | |
| 		}
 | |
| 	} else {
 | |
| 		var partSize uint64
 | |
| 		partSize, err = sio.DecryptedSize(uint64(o.Size))
 | |
| 		if err != nil {
 | |
| 			err = errObjectTampered
 | |
| 			return
 | |
| 		}
 | |
| 		sizes = []int64{int64(partSize)}
 | |
| 		decObjSize = sizes[0]
 | |
| 	}
 | |
| 
 | |
| 	var off, length int64
 | |
| 	off, length, err = rs.GetOffsetLength(decObjSize)
 | |
| 	if err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// At this point, we have:
 | |
| 	//
 | |
| 	// 1. the decrypted part sizes in `sizes` (single element for
 | |
| 	//    single part object) and total decrypted object size `decObjSize`
 | |
| 	//
 | |
| 	// 2. the (decrypted) start offset `off` and (decrypted)
 | |
| 	//    length to read `length`
 | |
| 	//
 | |
| 	// These are the inputs to the rest of the algorithm below.
 | |
| 
 | |
| 	// Locate the part containing the start of the required range
 | |
| 	var partEnd int
 | |
| 	var cumulativeSum, encCumulativeSum int64
 | |
| 	for i, size := range sizes {
 | |
| 		if off < cumulativeSum+size {
 | |
| 			partStart = i
 | |
| 			break
 | |
| 		}
 | |
| 		cumulativeSum += size
 | |
| 		encPartSize, _ := sio.EncryptedSize(uint64(size))
 | |
| 		encCumulativeSum += int64(encPartSize)
 | |
| 	}
 | |
| 	// partStart is always found in the loop above,
 | |
| 	// because off is validated.
 | |
| 
 | |
| 	sseDAREEncPackageBlockSize := int64(SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
 | |
| 	startPkgNum := (off - cumulativeSum) / SSEDAREPackageBlockSize
 | |
| 
 | |
| 	// Now we can calculate the number of bytes to skip
 | |
| 	skipLen = (off - cumulativeSum) % SSEDAREPackageBlockSize
 | |
| 
 | |
| 	encOff = encCumulativeSum + startPkgNum*sseDAREEncPackageBlockSize
 | |
| 	// Locate the part containing the end of the required range
 | |
| 	endOffset := off + length - 1
 | |
| 	for i1, size := range sizes[partStart:] {
 | |
| 		i := partStart + i1
 | |
| 		if endOffset < cumulativeSum+size {
 | |
| 			partEnd = i
 | |
| 			break
 | |
| 		}
 | |
| 		cumulativeSum += size
 | |
| 		encPartSize, _ := sio.EncryptedSize(uint64(size))
 | |
| 		encCumulativeSum += int64(encPartSize)
 | |
| 	}
 | |
| 	// partEnd is always found in the loop above, because off and
 | |
| 	// length are validated.
 | |
| 	endPkgNum := (endOffset - cumulativeSum) / SSEDAREPackageBlockSize
 | |
| 	// Compute endEncOffset with one additional DARE package (so
 | |
| 	// we read the package containing the last desired byte).
 | |
| 	endEncOffset := encCumulativeSum + (endPkgNum+1)*sseDAREEncPackageBlockSize
 | |
| 	// Check if the DARE package containing the end offset is a
 | |
| 	// full sized package (as the last package in the part may be
 | |
| 	// smaller)
 | |
| 	lastPartSize, _ := sio.EncryptedSize(uint64(sizes[partEnd]))
 | |
| 	if endEncOffset > encCumulativeSum+int64(lastPartSize) {
 | |
| 		endEncOffset = encCumulativeSum + int64(lastPartSize)
 | |
| 	}
 | |
| 	encLength = endEncOffset - encOff
 | |
| 	// Set the sequence number as the starting package number of
 | |
| 	// the requested block
 | |
| 	seqNumber = uint32(startPkgNum)
 | |
| 	return encOff, encLength, skipLen, seqNumber, partStart, nil
 | |
| }
 | |
| 
 | |
| // EncryptedSize returns the size of the object after encryption.
 | |
| // An encrypted object is always larger than a plain object
 | |
| // except for zero size objects.
 | |
| func (o *ObjectInfo) EncryptedSize() int64 {
 | |
| 	size, err := sio.EncryptedSize(uint64(o.Size))
 | |
| 	if err != nil {
 | |
| 		// This cannot happen since AWS S3 allows parts to be 5GB at most
 | |
| 		// sio max. size is 256 TB
 | |
| 		reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10))
 | |
| 		ctx := logger.SetReqInfo(GlobalContext, reqInfo)
 | |
| 		logger.CriticalIf(ctx, err)
 | |
| 	}
 | |
| 	return int64(size)
 | |
| }
 | |
| 
 | |
| // DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
 | |
| // It fails if the object is encrypted and the HTTP headers don't contain
 | |
| // SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
 | |
| // DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
 | |
| // decryption succeeded.
 | |
| //
 | |
| // DecryptObjectInfo also returns whether the object is encrypted or not.
 | |
| func DecryptObjectInfo(info *ObjectInfo, r *http.Request) (encrypted bool, err error) {
 | |
| 	// Directories are never encrypted.
 | |
| 	if info.IsDir {
 | |
| 		return false, nil
 | |
| 	}
 | |
| 	if r == nil {
 | |
| 		return false, errInvalidArgument
 | |
| 	}
 | |
| 
 | |
| 	headers := r.Header
 | |
| 
 | |
| 	// disallow X-Amz-Server-Side-Encryption header on HEAD and GET
 | |
| 	switch r.Method {
 | |
| 	case http.MethodGet, http.MethodHead:
 | |
| 		if crypto.S3.IsRequested(headers) {
 | |
| 			return false, errInvalidEncryptionParameters
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	encrypted = crypto.IsEncrypted(info.UserDefined)
 | |
| 	if !encrypted && crypto.SSEC.IsRequested(headers) && r.Header.Get(xhttp.AmzCopySource) == "" {
 | |
| 		return false, errInvalidEncryptionParameters
 | |
| 	}
 | |
| 
 | |
| 	if encrypted {
 | |
| 		if crypto.SSEC.IsEncrypted(info.UserDefined) {
 | |
| 			if !(crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers)) {
 | |
| 				return encrypted, errEncryptedObject
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if crypto.S3.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
 | |
| 			if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
 | |
| 				return encrypted, errEncryptedObject
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if _, err = info.DecryptedSize(); err != nil {
 | |
| 			return encrypted, err
 | |
| 		}
 | |
| 
 | |
| 		if crypto.IsEncrypted(info.UserDefined) && !crypto.IsMultiPart(info.UserDefined) {
 | |
| 			info.ETag = getDecryptedETag(headers, *info, false)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return encrypted, nil
 | |
| }
 | |
| 
 | |
| // The customer key in the header is used by the gateway for encryption in the case of
 | |
| // s3 gateway double encryption. A new client key is derived from the customer provided
 | |
| // key to be sent to the s3 backend for encryption at the backend.
 | |
| func deriveClientKey(clientKey [32]byte, bucket, object string) [32]byte {
 | |
| 	var key [32]byte
 | |
| 	mac := hmac.New(sha256.New, clientKey[:])
 | |
| 	mac.Write([]byte(crypto.SSEC.String()))
 | |
| 	mac.Write([]byte(path.Join(bucket, object)))
 | |
| 	mac.Sum(key[:0])
 | |
| 	return key
 | |
| }
 |