ollama/ml/backend/ggml/ggml.go

1651 lines
42 KiB
Go
Raw Normal View History

package ggml
// #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
// #cgo windows LDFLAGS: -lpthread
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"context"
2025-10-29 03:08:49 +08:00
"encoding/binary"
"errors"
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"unicode"
"unsafe"
"github.com/ollama/ollama/format"
2025-03-19 05:38:44 +08:00
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
2025-05-21 06:51:08 +08:00
"github.com/ollama/ollama/ml/nn/rope"
"golang.org/x/sync/errgroup"
)
var (
cpus, accels, gpus []C.ggml_backend_dev_t
backends map[C.ggml_backend_dev_t]C.ggml_backend_t
)
var initDevices = sync.OnceFunc(func() {
2025-03-05 05:06:56 +08:00
ggml.OnceLoad()
backends = make(map[C.ggml_backend_dev_t]C.ggml_backend_t)
for i := range C.ggml_backend_dev_count() {
d := C.ggml_backend_dev_get(i)
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
}
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
Vulkan based on #9650 (#11835) * implement the vulkan C backend * add support in gpu.go * add support in gen_linux.sh * it builds * fix segfault * fix compilation * fix free memory monitor * fix total memory monitor * update gpu.go * fix build * fix check_perfmon len * remove cap_get_bound check * fix vulkan handle releasing * fix build on federa 40 * fix vulkan on windows * making amdgpu work on arm achitecutre with vulkan * add x86_64 lines in VulkanGlobs and capLinuxGlobs * add aarch64 lines in vulkanGlobs and capLinuxGlobs * Fix variable name * Add vulkan build patch from @jmorganca * Sync vendored ggml to add Vulkan support * Updated dockerfile https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Installing rocm library Signed-off-by: Vadim Grinco <vadim@grinco.eu> * This version works well built based on this: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Applied 00-fix-vulkan-building.patch Work done by McBane87 here: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Fixed the "detached head" issues Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merged in the right direction Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merging the latest stable (#2) * Applied 00-fix-vulkan-building.patch * Implemented vulkan backend based on the work done by whyvl, Dts0, McBane87 and others Tested on AMD Ryzen 7 8845HS w/ Radeon 780M Graphics with ROCm disabled ``` [GIN-debug] POST /v1/chat/completions --> github.com/ollama/ollama/server.(*Server).ChatHandler-fm (6 handlers) [GIN-debug] POST /v1/completions --> github.com/ollama/ollama/server.(*Server).GenerateHandler-fm (6 handlers) [GIN-debug] POST /v1/embeddings --> github.com/ollama/ollama/server.(*Server).EmbedHandler-fm (6 handlers) [GIN-debug] GET /v1/models --> github.com/ollama/ollama/server.(*Server).ListHandler-fm (6 handlers) [GIN-debug] GET /v1/models/:model --> github.com/ollama/ollama/server.(*Server).ShowHandler-fm (6 handlers) time=2025-03-11T13:00:40.793Z level=INFO source=gpu.go:199 msg="vulkan: load libvulkan and libcap ok" time=2025-03-11T13:00:40.877Z level=INFO source=gpu.go:421 msg="error looking up vulkan GPU memory" error="device is a CPU" time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:443 msg="amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install" time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:348 msg="unable to verify rocm library: no suitable rocm found, falling back to CPU" time=2025-03-11T13:00:40.879Z level=INFO source=types.go:137 msg="inference compute" id=0 library=vulkan variant="" compute=1.3 driver=1.3 name="AMD Radeon Graphics (RADV GFX1103_R1)" total="15.6 GiB" available="15.6 GiB" ``` ``` # ollama run phi4:14b >>> /set verbose Set 'verbose' mode. >>> how's it going? Hello! I'm here to help you with any questions or tasks you have. How can I assist you today? 😊 total duration: 3.341959745s load duration: 18.165612ms prompt eval count: 15 token(s) prompt eval duration: 475ms prompt eval rate: 31.58 tokens/s eval count: 26 token(s) eval duration: 2.846s eval rate: 9.14 tokens/s >>> ``` * This is no longer needed Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Fixes SIGSEGV: segmentation violation running gemma3 models on ollama 0.6.0 #21 Patch provided by McBane87 on https://github.com/whyvl/ollama-vulkan/issues/21 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Applied 04-disable-mmap-vulkan.patch From: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Pulled new upstream code for ggml-bulkan backend Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merged latest ollama 0.6.2 and nasrally's Flash Attention patches (#5) * readme: add Ellama to list of community integrations (#9800) * readme: add screenpipe to community integrations (#9786) * Add support for ROCm gfx1151 (#9773) * conditionally enable parallel pipelines * sample: make mutations in transforms explicit (#9743) * updated minP to use early exit making use of sorted tokens * ml/backend/ggml: allocate memory with malloc when loading model (#9822) * runner: remove cache prompt flag from ollama runner (#9826) We do not need to bypass the prompt caching in the ollama runner yet, as only embedding models needed to bypass the prompt caching. When embedding models are implemented they can skip initializing this cache completely. * ollamarunner: Check for minBatch of context space when shifting Models can specify that a group of inputs need to be handled a single batch. However, context shifting didn't respect this and could trigger a break anyways. In this case, we should instead trigger a context shift earlier so that it occurs before the grouped batch. Note that there still some corner cases: - A long prompt that exceeds the context window can get truncated in the middle of an image. With the current models, this will result in the model not recognizing the image at all, which is pretty much the expected result with truncation. - The context window is set less than the minimum batch size. The only solution to this is to refuse to load the model with these settings. However, this can never occur with current models and default settings. Since users are unlikely to run into these scenarios, fixing them is left as a follow up. * Applied latest patches from McBane87 See this for details: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2708820861 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Add ability to enable flash attention on vulkan (#4) * discover: add flash attention handling for vulkan * envconfig: fix typo in config.go As part of the process some code was refactored and I added a new field FlashAttention to GpuInfo since the previous solution didn't allow for a granular check via vulkan extensions. As a side effect, this now allows for granular per-device FA support checking in other places --------- Signed-off-by: Vadim Grinco <vadim@grinco.eu> Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com> Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com> Co-authored-by: Michael Yang <mxyng@pm.me> Co-authored-by: Parth Sareen <parth.sareen@ollama.com> Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com> Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com> * Revert Readme changes * Revert * Revert changes in amd_linux.go * Revert changes in amd_linux.go * Remove flashattention setting gpu.go * Revert whitespace changes in gpu.go * Revert changes in transforms_test.go * Revert changes in runner.go * Revert changes in Makefile.sync * Revert some unintented changes in Dockerfile * Revert vulkan copy changes in Dockerfile * Update Vulkan Code to de4c07f93783a1a96456a44dc16b9db538ee1618 * Fixed duplicate sync in ggml.go * Revert changes in ggml.go * Revert chnages in ggml.go * enable falsh attention on vulkan * revert remove parenthesis * fixed flash attention logic enabling * vk_check_flash_attention 0 means supported * Update gpu.go * Add vulkan to Windows Build script * Remove commented out code * Enable Vulkan Flash attention in FlashAttentionSupported * Fix logging * Update Vulkan backend to e54d41befcc1575f4c898c5ff4ef43970cead75f * Removed libcap related code libcap is not directly related to Vulkan and should be added by its own PR. It adds additional library dependencies for building and also requires users to run setcap or run ollama as root, which is not ideal for easy use * Fix Unit Test (Add Vulkan Library) * Add vulkan to TestHomogeneousGPUs Test * vulkan: get GPU ID (ollama v0.11.5) Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> * disable mmap for vulkan * Reduce Changes remove TestHomogeneousGPUs (doesn't exist on master) * Update vulkan version to the version used in llama.cpp * rename gpu patch to correct number * added Vulkan API to get correct Device UUID current UUID from pipelineCacheUUID does not match CUDA * Fix GPU ID Patch * Remove Code not in llama.cpp * modified UUID code inside ggml * Fix Patch * Copied minimal definition from vulkan header * Fix compile error in Mac Metal is preferred so we're disabling Vulkan for now * Removed unused code Fix linter error in CI * Fix patches apply * fixing lint error * Removed unneeded function call Somehow removing this call fixed the crashing when Vulkan header was removed * added missing NL * Fixed missing members in Vulkan header also added zero clear for some structs * Fixed wrong structure ID * Fixed Vulkan header More aligned with official header definition now * buildvulkanAsSeperateFunction * Vulkan on Windows Test * temporarly comment out gate to run windows task * use temporarly windows-latest for build * Commenting out other presets to build vulkan * reenable cpu * commenting out error action stop * temporarly commenting out rocm * set vulkan path * comment out cude for faster turnaround * correct vulkan install * correct vulkan silent install * fixed install command * revert debugging changes (vulkan builds on windows) * revert windows-latest * trying to build vulkan for linux * temporarly disable cuda and rocm * try again linux build * fix version * trying to fix * trying again * trying again * fix version * fixed vulkan-sdk name * try again * trying again * try without version number * try again * add some more extra * trying to use version 1.4.313 * revert debugging changes * Filter out already supported gpus * revert debug code * Use runners for GPU discovery This revamps how we discover GPUs in the system by leveraging the Ollama runner. This should eliminate inconsistency between our GPU discovery and the runners capabilities at runtime, particularly for cases where we try to filter out unsupported GPUs. Now the runner does that implicitly based on the actual device list. In some cases free VRAM reporting can be unreliable which can leaad to scheduling mistakes, so this also includes a patch to leverage more reliable VRAM reporting libraries if available. Automatic workarounds have been removed as only one GPU leveraged this, which is now documented. This GPU will soon fall off the support matrix with the next ROCm bump. Additional cleanup of the scheduler and discovery packages can be done in the future once we have switched on the new memory management code, and removed support for the llama runner. * timing info for runner * WIP - wire up Vulkan with the new engine based discovery Not a complete implementation - free VRAM is better, but not accurate on windows * fix - trust the library paths from discovery when starting runner * fix index bug * fix vulkan ids to be underlying * fix - give bootstrapping more time on slow systems * Test if Vulkan device is supported * vk_check_flash_attention is not needed (coompat2 coopmapt and scalar implementation exist) * Handle GGML_VK_VISIBLE_DEVICES * ask for supported first * win: fix CPU query buffer handling Try in a short loop until we get the size right. * test: harden integration tests for slow start If the server takes a while to start up, block tests from starting until it's online to avoid setting large timeouts in individual test cases. * gofumpt fix * fix build * merge fixes * merge fixes * fixed build * merge fixes * fixing build * fixed build * fixed formatting * fixed build * fix vulkan gpu id patch * sync llama.cpp vulkan code * update build windows script * merge fixes * fix format * fixed vulkan casing * handle igpu as gpu * improve case * print out unknown library * rturn Vulkan for vulkan library * Revert "rturn Vulkan for vulkan library" This reverts commit 690461a12fd5e93295d174c97edefb2bc33285b1. * fixed patch number * return Library Name * remvoe debug code * return integrated in vulkan backend * Return pci Properties * update patch * directly get pci proeprties without parsing * workaround for filtering devices. Correct way is to have a LibraryPosition Parameter in the deviceInfo * Revert "directly get pci proeprties without parsing" This reverts commit 8e0624851f5ed7d9f74518f574dfb422e4dd4dc2. * Set FilteredID for Environment Filtering * ROCm Library is named ROCm * revert changes in patch * Create 0028-vulkan-pci-and-memory.patch * vulkan memory patch * casing fix * Add more pci properties * Added better memory management * Added better memory managament * fixed patch * Fixed patch * FilterID creation group by library * filter out vulkan supported by other gpu * fixing deviceid compare * Vulkan Fix FA coopmat1 invalid array indexing * Use everywhere the same Vulkan Version 1.4.321.1 * Remove unneeded patch * vulkan update * sync vulkan glsl files * only use for vulkan the filteredid (numeric device number) * simplify code --------- Signed-off-by: Vadim Grinco <vadim@grinco.eu> Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: pufferffish <github@bandersnatch.anonaddy.com> Co-authored-by: KOISHI KOMEIJI FROM TOUHOU 11 <fuck> Co-authored-by: DSLstandard <qgeneral35@gmail.com> Co-authored-by: pufferffish <me@windtfw.com> Co-authored-by: yeongbba <yeongmo.lee@logpresso.com> Co-authored-by: tomaThomas <tomathomas@mailbox.org> Co-authored-by: Antoine Viallon <antoine@lesviallon.fr> Co-authored-by: Vadim Grinco <vadim@grinco.eu> Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com> Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com> Co-authored-by: Michael Yang <mxyng@pm.me> Co-authored-by: Parth Sareen <parth.sareen@ollama.com> Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com> Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com> Co-authored-by: Masato Nakasaka <masato.nakasaka@intel.com> Co-authored-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-10-15 01:59:58 +08:00
case C.GGML_BACKEND_DEVICE_TYPE_GPU,
C.GGML_BACKEND_DEVICE_TYPE_IGPU:
gpus = append(gpus, d)
}
backends[d] = C.ggml_backend_dev_init(d, nil)
}
})
type layerDevice struct {
d C.ggml_backend_dev_t
bt C.ggml_backend_buffer_type_t
}
type Backend struct {
// modelPath is the location of the model data
modelPath string
meta *fsggml.GGML
// allocMemory means that memory should be allocated for tensors and not
// just a dry run
allocMemory bool
// tensorLoadTargets maps from the name of the tensor in the file
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
schedMu sync.Mutex // Only one Compute can run at a time
sched C.ggml_backend_sched_t
schedBackends []C.ggml_backend_t
schedBufts []C.ggml_backend_buffer_type_t
tensors map[string]*C.struct_ggml_tensor
2025-03-05 05:06:56 +08:00
// input is the backend buffer type used for inputs
input C.ggml_backend_buffer_type_t
2025-03-05 05:06:56 +08:00
// output is the backend device used for outputs
output C.ggml_backend_dev_t
2025-03-05 05:06:56 +08:00
// layers is the backend used for repeating layers
layers map[int]layerDevice
// requiredMemory is the cumulative memory allocations needed by the backend
requiredMemory *ml.BackendMemory
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
flashAttention bool
2025-03-05 05:06:56 +08:00
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
// weightBuffers are the GGML contexts and buffers for allocating weights
weightBuffers map[*C.struct_ggml_context]C.ggml_backend_buffer_t
}
var once sync.Once
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
once.Do(func() {
slog.Info(
"",
"architecture", meta.KV().Architecture(),
"file_type", meta.KV().FileType(),
"name", meta.KV().String("general.name"),
"description", meta.KV().String("general.description"),
"num_tensors", len(meta.Tensors().Items()),
"num_key_values", len(meta.KV()),
)
})
initDevices()
var requiredMemory ml.BackendMemory
btDeviceMemory := make(map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory)
type deviceBufferType struct {
d C.ggml_backend_dev_t
bts []C.ggml_backend_buffer_type_t
}
blocks := int(meta.KV().BlockCount())
2025-03-05 05:06:56 +08:00
// create list of buffer types for the cpu
2025-03-01 07:42:52 +08:00
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
bt := C.ggml_backend_dev_buffer_type(d)
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, bt)
btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
}
}
requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
requiredMemory.CPU.ID = C.GoString(props.id)
requiredMemory.CPU.Library = C.GoString(props.library)
requiredMemory.CPU.Weights = make([]uint64, blocks+1)
requiredMemory.CPU.Cache = make([]uint64, blocks+1)
2025-03-05 05:06:56 +08:00
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
for i, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...),
})
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(d, &props)
requiredMemory.GPUs[i].ID = C.GoString(props.id)
requiredMemory.GPUs[i].Library = C.GoString(props.library)
requiredMemory.GPUs[i].Weights = make([]uint64, blocks+1)
requiredMemory.GPUs[i].Cache = make([]uint64, blocks+1)
}
2025-03-05 05:06:56 +08:00
// inputs always use cpu
2025-03-01 07:42:52 +08:00
input := cpuDeviceBufferType
assignLayer := func(layer int) deviceBufferType {
for _, p := range params.GPULayers {
for _, l := range p.Layers {
if l == layer {
for i := range requiredMemory.GPUs {
if requiredMemory.GPUs[i].DeviceID == p.DeviceID {
return gpuDeviceBufferTypes[i]
}
}
return cpuDeviceBufferType
}
}
2025-02-27 07:14:16 +08:00
}
return cpuDeviceBufferType
}
2025-03-05 05:06:56 +08:00
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
layers := make([]deviceBufferType, blocks)
for i := range layers {
layers[i] = assignLayer(i)
}
2025-03-05 05:06:56 +08:00
// outputs are assigned iff allowed by splits and configured number of gpu layers
output := assignLayer(blocks)
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
2025-03-05 05:06:56 +08:00
// each layer has at most 2 extra tensors for rope operations
maxTensors += blocks * 2
type tensor struct {
2025-03-19 05:38:44 +08:00
source *fsggml.Tensor
target string
}
2025-03-05 05:06:56 +08:00
// some tensors are mapped to different names so keep a list
targets := make(map[string][]string)
2025-03-05 05:06:56 +08:00
// contexts are shared by tensors of the same buffer type
ctxs := make(map[C.ggml_backend_buffer_type_t]*C.struct_ggml_context)
createTensor := func(t tensor, bts []C.ggml_backend_buffer_type_t, layer int) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
no_alloc: true,
})
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
name := t.source.Name
if t.target != "" {
name = t.target
}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
return tt
}
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
kind := t.source.Kind
if t.source.Kind == 4 {
// transform raw mxfp4 stream to ggml mxfp4 format
kind = 39
} else if t.source.Kind == uint32(fsggml.TensorTypeBF16) && strings.HasSuffix(t.source.Name, "_exps.bias") {
// transform "_exps.bias" from bf16 to fp32; add_ids only supports fp32 tensors
kind = uint32(fsggml.TensorTypeF32)
}
tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
logutil.Trace("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
requiredMemory.InputWeights += uint64(size)
} else {
btDeviceMemory[bt].Weights[layer] += uint64(size)
}
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
return nil
}
contains := func(s string, parts ...string) bool {
split := strings.Split(s, ".")
for _, part := range parts {
if slices.Contains(split, part) {
return true
}
}
return false
}
for _, t := range meta.Tensors().Items() {
switch {
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts, -1)
2025-03-10 02:29:08 +08:00
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
2025-03-10 02:29:08 +08:00
}
case contains(t.Name, "cls", "output", "output_norm",
"altup_proj", "altup_unembd_proj",
"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
createTensor(tensor{source: t}, output.bts, blocks)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
2025-03-05 05:06:56 +08:00
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, output.bts, blocks)
2025-03-11 01:46:17 +08:00
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
// these tensors should be repeated per layer
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts, i)
2025-03-11 01:46:17 +08:00
}
default:
2025-03-05 05:06:56 +08:00
layerIndex := -1
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
layerIndex = i
}
2025-03-05 05:06:56 +08:00
}
2025-03-05 05:06:56 +08:00
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
} else {
2025-03-11 01:46:17 +08:00
// load all other tensors on the cpu
createTensor(tensor{source: t}, input.bts, -1)
}
}
}
2025-03-05 05:06:56 +08:00
// map tensor names to tensors for easy lookup later
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
tensors[C.GoString(C.ggml_get_name(t))] = t
}
}
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[C.ggml_backend_dev_t]C.ggml_backend_buffer_type_t)
// create backends and buffer types used for the compute graph scheduler
var schedBackends []C.ggml_backend_t
var schedBufts []C.ggml_backend_buffer_type_t
for _, d := range append(gpus, append(accels, cpus...)...) {
b := backends[d]
bt := C.ggml_backend_get_default_buffer_type(b)
// Always include CPU as a fallback but otherwise, just use the devices where we assigned layers
if !slices.Contains(cpuDeviceBufferType.bts, bt) {
if c, ok := ctxs[bt]; !ok || C.ggml_get_first_tensor(c) == nil {
continue
}
}
deviceBufferTypes[d] = bt
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
}
}
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
sched := C.ggml_backend_sched_new_ext(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
C._Bool(false),
C._Bool(false),
C._Bool(params.AllocMemory),
)
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
if b == nil {
for _, b := range bbs {
C.ggml_backend_buffer_free(b)
}
for _, ctx := range ctxs {
C.ggml_free(ctx)
}
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
for bs := range maps.Values(bbs) {
logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
return &Backend{
modelPath: modelPath,
allocMemory: params.AllocMemory,
flashAttention: params.FlashAttention,
meta: meta,
tensorLoadTargets: targets,
tensors: tensors,
sched: sched,
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
output: output.d,
layers: func() map[int]layerDevice {
m := make(map[int]layerDevice)
for i, layer := range layers {
m[i] = layerDevice{
d: layer.d,
bt: deviceBufferTypes[layer.d],
}
}
return m
}(),
requiredMemory: &requiredMemory,
btDeviceMemory: btDeviceMemory,
maxGraphNodes: maxGraphNodes,
weightBuffers: bbs,
}, nil
}
func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Close() {
if b == nil {
return
}
for ctx, b := range b.weightBuffers {
C.ggml_backend_buffer_free(b)
C.ggml_free(ctx)
}
C.ggml_backend_sched_free(b.sched)
}
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
if !b.allocMemory {
return errors.New("cannot load model without memory allocation")
}
// Mimic llama runner logs summarizing layers and memory
gpuLayers := 0
for layer := range maps.Values(b.layers) {
Vulkan based on #9650 (#11835) * implement the vulkan C backend * add support in gpu.go * add support in gen_linux.sh * it builds * fix segfault * fix compilation * fix free memory monitor * fix total memory monitor * update gpu.go * fix build * fix check_perfmon len * remove cap_get_bound check * fix vulkan handle releasing * fix build on federa 40 * fix vulkan on windows * making amdgpu work on arm achitecutre with vulkan * add x86_64 lines in VulkanGlobs and capLinuxGlobs * add aarch64 lines in vulkanGlobs and capLinuxGlobs * Fix variable name * Add vulkan build patch from @jmorganca * Sync vendored ggml to add Vulkan support * Updated dockerfile https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Installing rocm library Signed-off-by: Vadim Grinco <vadim@grinco.eu> * This version works well built based on this: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Applied 00-fix-vulkan-building.patch Work done by McBane87 here: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Fixed the "detached head" issues Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merged in the right direction Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merging the latest stable (#2) * Applied 00-fix-vulkan-building.patch * Implemented vulkan backend based on the work done by whyvl, Dts0, McBane87 and others Tested on AMD Ryzen 7 8845HS w/ Radeon 780M Graphics with ROCm disabled ``` [GIN-debug] POST /v1/chat/completions --> github.com/ollama/ollama/server.(*Server).ChatHandler-fm (6 handlers) [GIN-debug] POST /v1/completions --> github.com/ollama/ollama/server.(*Server).GenerateHandler-fm (6 handlers) [GIN-debug] POST /v1/embeddings --> github.com/ollama/ollama/server.(*Server).EmbedHandler-fm (6 handlers) [GIN-debug] GET /v1/models --> github.com/ollama/ollama/server.(*Server).ListHandler-fm (6 handlers) [GIN-debug] GET /v1/models/:model --> github.com/ollama/ollama/server.(*Server).ShowHandler-fm (6 handlers) time=2025-03-11T13:00:40.793Z level=INFO source=gpu.go:199 msg="vulkan: load libvulkan and libcap ok" time=2025-03-11T13:00:40.877Z level=INFO source=gpu.go:421 msg="error looking up vulkan GPU memory" error="device is a CPU" time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:443 msg="amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install" time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:348 msg="unable to verify rocm library: no suitable rocm found, falling back to CPU" time=2025-03-11T13:00:40.879Z level=INFO source=types.go:137 msg="inference compute" id=0 library=vulkan variant="" compute=1.3 driver=1.3 name="AMD Radeon Graphics (RADV GFX1103_R1)" total="15.6 GiB" available="15.6 GiB" ``` ``` # ollama run phi4:14b >>> /set verbose Set 'verbose' mode. >>> how's it going? Hello! I'm here to help you with any questions or tasks you have. How can I assist you today? 😊 total duration: 3.341959745s load duration: 18.165612ms prompt eval count: 15 token(s) prompt eval duration: 475ms prompt eval rate: 31.58 tokens/s eval count: 26 token(s) eval duration: 2.846s eval rate: 9.14 tokens/s >>> ``` * This is no longer needed Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Fixes SIGSEGV: segmentation violation running gemma3 models on ollama 0.6.0 #21 Patch provided by McBane87 on https://github.com/whyvl/ollama-vulkan/issues/21 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Applied 04-disable-mmap-vulkan.patch From: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Pulled new upstream code for ggml-bulkan backend Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merged latest ollama 0.6.2 and nasrally's Flash Attention patches (#5) * readme: add Ellama to list of community integrations (#9800) * readme: add screenpipe to community integrations (#9786) * Add support for ROCm gfx1151 (#9773) * conditionally enable parallel pipelines * sample: make mutations in transforms explicit (#9743) * updated minP to use early exit making use of sorted tokens * ml/backend/ggml: allocate memory with malloc when loading model (#9822) * runner: remove cache prompt flag from ollama runner (#9826) We do not need to bypass the prompt caching in the ollama runner yet, as only embedding models needed to bypass the prompt caching. When embedding models are implemented they can skip initializing this cache completely. * ollamarunner: Check for minBatch of context space when shifting Models can specify that a group of inputs need to be handled a single batch. However, context shifting didn't respect this and could trigger a break anyways. In this case, we should instead trigger a context shift earlier so that it occurs before the grouped batch. Note that there still some corner cases: - A long prompt that exceeds the context window can get truncated in the middle of an image. With the current models, this will result in the model not recognizing the image at all, which is pretty much the expected result with truncation. - The context window is set less than the minimum batch size. The only solution to this is to refuse to load the model with these settings. However, this can never occur with current models and default settings. Since users are unlikely to run into these scenarios, fixing them is left as a follow up. * Applied latest patches from McBane87 See this for details: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2708820861 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Add ability to enable flash attention on vulkan (#4) * discover: add flash attention handling for vulkan * envconfig: fix typo in config.go As part of the process some code was refactored and I added a new field FlashAttention to GpuInfo since the previous solution didn't allow for a granular check via vulkan extensions. As a side effect, this now allows for granular per-device FA support checking in other places --------- Signed-off-by: Vadim Grinco <vadim@grinco.eu> Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com> Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com> Co-authored-by: Michael Yang <mxyng@pm.me> Co-authored-by: Parth Sareen <parth.sareen@ollama.com> Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com> Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com> * Revert Readme changes * Revert * Revert changes in amd_linux.go * Revert changes in amd_linux.go * Remove flashattention setting gpu.go * Revert whitespace changes in gpu.go * Revert changes in transforms_test.go * Revert changes in runner.go * Revert changes in Makefile.sync * Revert some unintented changes in Dockerfile * Revert vulkan copy changes in Dockerfile * Update Vulkan Code to de4c07f93783a1a96456a44dc16b9db538ee1618 * Fixed duplicate sync in ggml.go * Revert changes in ggml.go * Revert chnages in ggml.go * enable falsh attention on vulkan * revert remove parenthesis * fixed flash attention logic enabling * vk_check_flash_attention 0 means supported * Update gpu.go * Add vulkan to Windows Build script * Remove commented out code * Enable Vulkan Flash attention in FlashAttentionSupported * Fix logging * Update Vulkan backend to e54d41befcc1575f4c898c5ff4ef43970cead75f * Removed libcap related code libcap is not directly related to Vulkan and should be added by its own PR. It adds additional library dependencies for building and also requires users to run setcap or run ollama as root, which is not ideal for easy use * Fix Unit Test (Add Vulkan Library) * Add vulkan to TestHomogeneousGPUs Test * vulkan: get GPU ID (ollama v0.11.5) Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> * disable mmap for vulkan * Reduce Changes remove TestHomogeneousGPUs (doesn't exist on master) * Update vulkan version to the version used in llama.cpp * rename gpu patch to correct number * added Vulkan API to get correct Device UUID current UUID from pipelineCacheUUID does not match CUDA * Fix GPU ID Patch * Remove Code not in llama.cpp * modified UUID code inside ggml * Fix Patch * Copied minimal definition from vulkan header * Fix compile error in Mac Metal is preferred so we're disabling Vulkan for now * Removed unused code Fix linter error in CI * Fix patches apply * fixing lint error * Removed unneeded function call Somehow removing this call fixed the crashing when Vulkan header was removed * added missing NL * Fixed missing members in Vulkan header also added zero clear for some structs * Fixed wrong structure ID * Fixed Vulkan header More aligned with official header definition now * buildvulkanAsSeperateFunction * Vulkan on Windows Test * temporarly comment out gate to run windows task * use temporarly windows-latest for build * Commenting out other presets to build vulkan * reenable cpu * commenting out error action stop * temporarly commenting out rocm * set vulkan path * comment out cude for faster turnaround * correct vulkan install * correct vulkan silent install * fixed install command * revert debugging changes (vulkan builds on windows) * revert windows-latest * trying to build vulkan for linux * temporarly disable cuda and rocm * try again linux build * fix version * trying to fix * trying again * trying again * fix version * fixed vulkan-sdk name * try again * trying again * try without version number * try again * add some more extra * trying to use version 1.4.313 * revert debugging changes * Filter out already supported gpus * revert debug code * Use runners for GPU discovery This revamps how we discover GPUs in the system by leveraging the Ollama runner. This should eliminate inconsistency between our GPU discovery and the runners capabilities at runtime, particularly for cases where we try to filter out unsupported GPUs. Now the runner does that implicitly based on the actual device list. In some cases free VRAM reporting can be unreliable which can leaad to scheduling mistakes, so this also includes a patch to leverage more reliable VRAM reporting libraries if available. Automatic workarounds have been removed as only one GPU leveraged this, which is now documented. This GPU will soon fall off the support matrix with the next ROCm bump. Additional cleanup of the scheduler and discovery packages can be done in the future once we have switched on the new memory management code, and removed support for the llama runner. * timing info for runner * WIP - wire up Vulkan with the new engine based discovery Not a complete implementation - free VRAM is better, but not accurate on windows * fix - trust the library paths from discovery when starting runner * fix index bug * fix vulkan ids to be underlying * fix - give bootstrapping more time on slow systems * Test if Vulkan device is supported * vk_check_flash_attention is not needed (coompat2 coopmapt and scalar implementation exist) * Handle GGML_VK_VISIBLE_DEVICES * ask for supported first * win: fix CPU query buffer handling Try in a short loop until we get the size right. * test: harden integration tests for slow start If the server takes a while to start up, block tests from starting until it's online to avoid setting large timeouts in individual test cases. * gofumpt fix * fix build * merge fixes * merge fixes * fixed build * merge fixes * fixing build * fixed build * fixed formatting * fixed build * fix vulkan gpu id patch * sync llama.cpp vulkan code * update build windows script * merge fixes * fix format * fixed vulkan casing * handle igpu as gpu * improve case * print out unknown library * rturn Vulkan for vulkan library * Revert "rturn Vulkan for vulkan library" This reverts commit 690461a12fd5e93295d174c97edefb2bc33285b1. * fixed patch number * return Library Name * remvoe debug code * return integrated in vulkan backend * Return pci Properties * update patch * directly get pci proeprties without parsing * workaround for filtering devices. Correct way is to have a LibraryPosition Parameter in the deviceInfo * Revert "directly get pci proeprties without parsing" This reverts commit 8e0624851f5ed7d9f74518f574dfb422e4dd4dc2. * Set FilteredID for Environment Filtering * ROCm Library is named ROCm * revert changes in patch * Create 0028-vulkan-pci-and-memory.patch * vulkan memory patch * casing fix * Add more pci properties * Added better memory management * Added better memory managament * fixed patch * Fixed patch * FilterID creation group by library * filter out vulkan supported by other gpu * fixing deviceid compare * Vulkan Fix FA coopmat1 invalid array indexing * Use everywhere the same Vulkan Version 1.4.321.1 * Remove unneeded patch * vulkan update * sync vulkan glsl files * only use for vulkan the filteredid (numeric device number) * simplify code --------- Signed-off-by: Vadim Grinco <vadim@grinco.eu> Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: pufferffish <github@bandersnatch.anonaddy.com> Co-authored-by: KOISHI KOMEIJI FROM TOUHOU 11 <fuck> Co-authored-by: DSLstandard <qgeneral35@gmail.com> Co-authored-by: pufferffish <me@windtfw.com> Co-authored-by: yeongbba <yeongmo.lee@logpresso.com> Co-authored-by: tomaThomas <tomathomas@mailbox.org> Co-authored-by: Antoine Viallon <antoine@lesviallon.fr> Co-authored-by: Vadim Grinco <vadim@grinco.eu> Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com> Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com> Co-authored-by: Michael Yang <mxyng@pm.me> Co-authored-by: Parth Sareen <parth.sareen@ollama.com> Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com> Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com> Co-authored-by: Masato Nakasaka <masato.nakasaka@intel.com> Co-authored-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-10-15 01:59:58 +08:00
switch C.ggml_backend_dev_type(layer.d) {
case C.GGML_BACKEND_DEVICE_TYPE_GPU,
C.GGML_BACKEND_DEVICE_TYPE_IGPU:
gpuLayers++
}
}
slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", gpuLayers))
switch C.ggml_backend_dev_type(b.output) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
slog.Info("offloading output layer to CPU")
Vulkan based on #9650 (#11835) * implement the vulkan C backend * add support in gpu.go * add support in gen_linux.sh * it builds * fix segfault * fix compilation * fix free memory monitor * fix total memory monitor * update gpu.go * fix build * fix check_perfmon len * remove cap_get_bound check * fix vulkan handle releasing * fix build on federa 40 * fix vulkan on windows * making amdgpu work on arm achitecutre with vulkan * add x86_64 lines in VulkanGlobs and capLinuxGlobs * add aarch64 lines in vulkanGlobs and capLinuxGlobs * Fix variable name * Add vulkan build patch from @jmorganca * Sync vendored ggml to add Vulkan support * Updated dockerfile https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Installing rocm library Signed-off-by: Vadim Grinco <vadim@grinco.eu> * This version works well built based on this: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Applied 00-fix-vulkan-building.patch Work done by McBane87 here: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Fixed the "detached head" issues Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merged in the right direction Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merging the latest stable (#2) * Applied 00-fix-vulkan-building.patch * Implemented vulkan backend based on the work done by whyvl, Dts0, McBane87 and others Tested on AMD Ryzen 7 8845HS w/ Radeon 780M Graphics with ROCm disabled ``` [GIN-debug] POST /v1/chat/completions --> github.com/ollama/ollama/server.(*Server).ChatHandler-fm (6 handlers) [GIN-debug] POST /v1/completions --> github.com/ollama/ollama/server.(*Server).GenerateHandler-fm (6 handlers) [GIN-debug] POST /v1/embeddings --> github.com/ollama/ollama/server.(*Server).EmbedHandler-fm (6 handlers) [GIN-debug] GET /v1/models --> github.com/ollama/ollama/server.(*Server).ListHandler-fm (6 handlers) [GIN-debug] GET /v1/models/:model --> github.com/ollama/ollama/server.(*Server).ShowHandler-fm (6 handlers) time=2025-03-11T13:00:40.793Z level=INFO source=gpu.go:199 msg="vulkan: load libvulkan and libcap ok" time=2025-03-11T13:00:40.877Z level=INFO source=gpu.go:421 msg="error looking up vulkan GPU memory" error="device is a CPU" time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:443 msg="amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install" time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:348 msg="unable to verify rocm library: no suitable rocm found, falling back to CPU" time=2025-03-11T13:00:40.879Z level=INFO source=types.go:137 msg="inference compute" id=0 library=vulkan variant="" compute=1.3 driver=1.3 name="AMD Radeon Graphics (RADV GFX1103_R1)" total="15.6 GiB" available="15.6 GiB" ``` ``` # ollama run phi4:14b >>> /set verbose Set 'verbose' mode. >>> how's it going? Hello! I'm here to help you with any questions or tasks you have. How can I assist you today? 😊 total duration: 3.341959745s load duration: 18.165612ms prompt eval count: 15 token(s) prompt eval duration: 475ms prompt eval rate: 31.58 tokens/s eval count: 26 token(s) eval duration: 2.846s eval rate: 9.14 tokens/s >>> ``` * This is no longer needed Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Fixes SIGSEGV: segmentation violation running gemma3 models on ollama 0.6.0 #21 Patch provided by McBane87 on https://github.com/whyvl/ollama-vulkan/issues/21 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Applied 04-disable-mmap-vulkan.patch From: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Pulled new upstream code for ggml-bulkan backend Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Merged latest ollama 0.6.2 and nasrally's Flash Attention patches (#5) * readme: add Ellama to list of community integrations (#9800) * readme: add screenpipe to community integrations (#9786) * Add support for ROCm gfx1151 (#9773) * conditionally enable parallel pipelines * sample: make mutations in transforms explicit (#9743) * updated minP to use early exit making use of sorted tokens * ml/backend/ggml: allocate memory with malloc when loading model (#9822) * runner: remove cache prompt flag from ollama runner (#9826) We do not need to bypass the prompt caching in the ollama runner yet, as only embedding models needed to bypass the prompt caching. When embedding models are implemented they can skip initializing this cache completely. * ollamarunner: Check for minBatch of context space when shifting Models can specify that a group of inputs need to be handled a single batch. However, context shifting didn't respect this and could trigger a break anyways. In this case, we should instead trigger a context shift earlier so that it occurs before the grouped batch. Note that there still some corner cases: - A long prompt that exceeds the context window can get truncated in the middle of an image. With the current models, this will result in the model not recognizing the image at all, which is pretty much the expected result with truncation. - The context window is set less than the minimum batch size. The only solution to this is to refuse to load the model with these settings. However, this can never occur with current models and default settings. Since users are unlikely to run into these scenarios, fixing them is left as a follow up. * Applied latest patches from McBane87 See this for details: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2708820861 Signed-off-by: Vadim Grinco <vadim@grinco.eu> * Add ability to enable flash attention on vulkan (#4) * discover: add flash attention handling for vulkan * envconfig: fix typo in config.go As part of the process some code was refactored and I added a new field FlashAttention to GpuInfo since the previous solution didn't allow for a granular check via vulkan extensions. As a side effect, this now allows for granular per-device FA support checking in other places --------- Signed-off-by: Vadim Grinco <vadim@grinco.eu> Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com> Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com> Co-authored-by: Michael Yang <mxyng@pm.me> Co-authored-by: Parth Sareen <parth.sareen@ollama.com> Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com> Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com> * Revert Readme changes * Revert * Revert changes in amd_linux.go * Revert changes in amd_linux.go * Remove flashattention setting gpu.go * Revert whitespace changes in gpu.go * Revert changes in transforms_test.go * Revert changes in runner.go * Revert changes in Makefile.sync * Revert some unintented changes in Dockerfile * Revert vulkan copy changes in Dockerfile * Update Vulkan Code to de4c07f93783a1a96456a44dc16b9db538ee1618 * Fixed duplicate sync in ggml.go * Revert changes in ggml.go * Revert chnages in ggml.go * enable falsh attention on vulkan * revert remove parenthesis * fixed flash attention logic enabling * vk_check_flash_attention 0 means supported * Update gpu.go * Add vulkan to Windows Build script * Remove commented out code * Enable Vulkan Flash attention in FlashAttentionSupported * Fix logging * Update Vulkan backend to e54d41befcc1575f4c898c5ff4ef43970cead75f * Removed libcap related code libcap is not directly related to Vulkan and should be added by its own PR. It adds additional library dependencies for building and also requires users to run setcap or run ollama as root, which is not ideal for easy use * Fix Unit Test (Add Vulkan Library) * Add vulkan to TestHomogeneousGPUs Test * vulkan: get GPU ID (ollama v0.11.5) Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> * disable mmap for vulkan * Reduce Changes remove TestHomogeneousGPUs (doesn't exist on master) * Update vulkan version to the version used in llama.cpp * rename gpu patch to correct number * added Vulkan API to get correct Device UUID current UUID from pipelineCacheUUID does not match CUDA * Fix GPU ID Patch * Remove Code not in llama.cpp * modified UUID code inside ggml * Fix Patch * Copied minimal definition from vulkan header * Fix compile error in Mac Metal is preferred so we're disabling Vulkan for now * Removed unused code Fix linter error in CI * Fix patches apply * fixing lint error * Removed unneeded function call Somehow removing this call fixed the crashing when Vulkan header was removed * added missing NL * Fixed missing members in Vulkan header also added zero clear for some structs * Fixed wrong structure ID * Fixed Vulkan header More aligned with official header definition now * buildvulkanAsSeperateFunction * Vulkan on Windows Test * temporarly comment out gate to run windows task * use temporarly windows-latest for build * Commenting out other presets to build vulkan * reenable cpu * commenting out error action stop * temporarly commenting out rocm * set vulkan path * comment out cude for faster turnaround * correct vulkan install * correct vulkan silent install * fixed install command * revert debugging changes (vulkan builds on windows) * revert windows-latest * trying to build vulkan for linux * temporarly disable cuda and rocm * try again linux build * fix version * trying to fix * trying again * trying again * fix version * fixed vulkan-sdk name * try again * trying again * try without version number * try again * add some more extra * trying to use version 1.4.313 * revert debugging changes * Filter out already supported gpus * revert debug code * Use runners for GPU discovery This revamps how we discover GPUs in the system by leveraging the Ollama runner. This should eliminate inconsistency between our GPU discovery and the runners capabilities at runtime, particularly for cases where we try to filter out unsupported GPUs. Now the runner does that implicitly based on the actual device list. In some cases free VRAM reporting can be unreliable which can leaad to scheduling mistakes, so this also includes a patch to leverage more reliable VRAM reporting libraries if available. Automatic workarounds have been removed as only one GPU leveraged this, which is now documented. This GPU will soon fall off the support matrix with the next ROCm bump. Additional cleanup of the scheduler and discovery packages can be done in the future once we have switched on the new memory management code, and removed support for the llama runner. * timing info for runner * WIP - wire up Vulkan with the new engine based discovery Not a complete implementation - free VRAM is better, but not accurate on windows * fix - trust the library paths from discovery when starting runner * fix index bug * fix vulkan ids to be underlying * fix - give bootstrapping more time on slow systems * Test if Vulkan device is supported * vk_check_flash_attention is not needed (coompat2 coopmapt and scalar implementation exist) * Handle GGML_VK_VISIBLE_DEVICES * ask for supported first * win: fix CPU query buffer handling Try in a short loop until we get the size right. * test: harden integration tests for slow start If the server takes a while to start up, block tests from starting until it's online to avoid setting large timeouts in individual test cases. * gofumpt fix * fix build * merge fixes * merge fixes * fixed build * merge fixes * fixing build * fixed build * fixed formatting * fixed build * fix vulkan gpu id patch * sync llama.cpp vulkan code * update build windows script * merge fixes * fix format * fixed vulkan casing * handle igpu as gpu * improve case * print out unknown library * rturn Vulkan for vulkan library * Revert "rturn Vulkan for vulkan library" This reverts commit 690461a12fd5e93295d174c97edefb2bc33285b1. * fixed patch number * return Library Name * remvoe debug code * return integrated in vulkan backend * Return pci Properties * update patch * directly get pci proeprties without parsing * workaround for filtering devices. Correct way is to have a LibraryPosition Parameter in the deviceInfo * Revert "directly get pci proeprties without parsing" This reverts commit 8e0624851f5ed7d9f74518f574dfb422e4dd4dc2. * Set FilteredID for Environment Filtering * ROCm Library is named ROCm * revert changes in patch * Create 0028-vulkan-pci-and-memory.patch * vulkan memory patch * casing fix * Add more pci properties * Added better memory management * Added better memory managament * fixed patch * Fixed patch * FilterID creation group by library * filter out vulkan supported by other gpu * fixing deviceid compare * Vulkan Fix FA coopmat1 invalid array indexing * Use everywhere the same Vulkan Version 1.4.321.1 * Remove unneeded patch * vulkan update * sync vulkan glsl files * only use for vulkan the filteredid (numeric device number) * simplify code --------- Signed-off-by: Vadim Grinco <vadim@grinco.eu> Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: pufferffish <github@bandersnatch.anonaddy.com> Co-authored-by: KOISHI KOMEIJI FROM TOUHOU 11 <fuck> Co-authored-by: DSLstandard <qgeneral35@gmail.com> Co-authored-by: pufferffish <me@windtfw.com> Co-authored-by: yeongbba <yeongmo.lee@logpresso.com> Co-authored-by: tomaThomas <tomathomas@mailbox.org> Co-authored-by: Antoine Viallon <antoine@lesviallon.fr> Co-authored-by: Vadim Grinco <vadim@grinco.eu> Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com> Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com> Co-authored-by: Michael Yang <mxyng@pm.me> Co-authored-by: Parth Sareen <parth.sareen@ollama.com> Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com> Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com> Co-authored-by: Masato Nakasaka <masato.nakasaka@intel.com> Co-authored-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-10-15 01:59:58 +08:00
case C.GGML_BACKEND_DEVICE_TYPE_GPU,
C.GGML_BACKEND_DEVICE_TYPE_IGPU:
slog.Info("offloading output layer to GPU")
gpuLayers++
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
slog.Info("offloading output layer to ACCEL")
}
slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(b.layers)+1))
var doneBytes atomic.Uint64
totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range b.meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
for i := range tts {
target := b.tensorLoadTargets[t.Name][i]
if target == "" {
target = t.Name
}
tt, ok := b.tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(b.modelPath)
if err != nil {
slog.Warn("file open error", "file", b.modelPath, "error", err)
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
if t.Kind == 4 && tts[0]._type == 39 {
// source is mxfp4, target is ggml mxfp4
const BS = 17 // MXFP4 block size
bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned
var s uint64
var tmp [16]byte
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for j := range n / BS {
for i := 1; i < 9; i++ {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[j*BS+i], bts[j*BS+i+8]
tmp[2*(i-1)] = (a & 0x0F) | (b << 4)
tmp[2*(i-1)+1] = (a >> 4) | (b & 0xF0)
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
}
copy(bts[j*BS+1:j*BS+17], tmp[:])
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
} else if strings.HasSuffix(t.Name, "_exps.bias") && t.Kind == 30 && tts[0]._type == 0 {
// source is bf16, target is ggml fp32
// data is bf16 but we need to convert to fp32
bts := make([]byte, 128*format.KibiByte)
var e uint64
for e < t.Elements() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Elements()-e)*2)])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
fp32 := ConvertToF32(bts, uint32(fsggml.TensorTypeBF16), uint64(n/2))
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&fp32[0]), C.size_t(e*4), C.size_t(n*2))
}
e += uint64(n / 2)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
}
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
// Cleanup any backend state from devices that we didn't end up using
nextDevice:
for _, d := range append(gpus, append(accels, cpus...)...) {
for _, backend := range b.schedBackends {
if d == C.ggml_backend_get_device(backend) {
continue nextDevice
}
}
C.ggml_backend_dev_reset(d)
}
if err := g.Wait(); err != nil {
return err
}
return nil
}
func (b *Backend) BackendMemory() ml.BackendMemory {
return *b.requiredMemory
}
2025-03-19 05:38:44 +08:00
func (b *Backend) Config() fs.Config {
return b.meta.KV()
}
func (b *Backend) Get(name string) ml.Tensor {
if t, ok := b.tensors[name]; ok {
return &Tensor{b: b, t: t}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
2025-03-05 05:06:56 +08:00
return b.NewContextSize(b.maxGraphNodes)
}
func (b *Backend) NewContextSize(n int) ml.Context {
2025-03-08 03:19:03 +08:00
if n > b.maxGraphNodes {
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
}
var allocatedBuffers []C.ggml_backend_buffer_t
return &Context{
b: b,
maxGraphNodes: n,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
no_alloc: true,
}),
allocatedBuffers: &allocatedBuffers,
layer: -1,
}
}
func (b *Backend) CacheConfig() ml.CacheConfig {
if b.flashAttention {
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
} else {
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
}
}
func (b *Backend) BackendDevices() []ml.DeviceInfo {
deviceInfos := []ml.DeviceInfo{}
for _, dev := range gpus {
// If we have a model loaded, and it's only loaded on a subset of the devices
// skip idle/unused devices to avoid initializing them and causing VRAM allocations
if b.allocMemory {
idleDev := true
for _, backend := range b.schedBackends {
if dev == C.ggml_backend_get_device(backend) {
idleDev = false
break
}
}
if idleDev {
slog.Debug("skipping unused backend device", "description", C.GoString(C.ggml_backend_dev_description(dev)))
continue
}
}
info := ml.DeviceInfo{}
props := C.struct_ggml_backend_dev_props{}
C.ggml_backend_dev_get_props(dev, &props)
info.Name = C.GoString(props.name)
info.Description = C.GoString(props.description)
info.ID = C.GoString(props.id)
info.Library = C.GoString(props.library)
info.ComputeMajor = (int)(props.compute_major)
info.ComputeMinor = (int)(props.compute_minor)
info.DriverMajor = (int)(props.driver_major)
info.DriverMinor = (int)(props.driver_minor)
info.Integrated = props.integrated != 0
if props.library != nil {
info.Library = C.GoString(props.library)
}
info.PCIID = fmt.Sprintf("%02x:%02x.%x", props.pci_bus_id, props.pci_device_id, props.pci_domain_id)
info.LibraryPath = ggml.LibPaths()
if props.numeric_id != nil {
info.FilteredID = C.GoString(props.numeric_id)
}
C.ggml_backend_dev_memory(dev, &props.memory_free, &props.memory_total)
info.TotalMemory = (uint64)(props.memory_total)
info.FreeMemory = (uint64)(props.memory_free)
deviceInfos = append(deviceInfos, info)
}
return deviceInfos
}
type Context struct {
b *Backend
ctx *C.struct_ggml_context
graph *C.struct_ggml_cgraph
// buft is the buffer type used for new tensors
buft C.ggml_backend_buffer_type_t
// allocatedBuffers are buffers for tensors that we have allocated in this context
// so that we can free them when we close the context
allocatedBuffers *[]C.ggml_backend_buffer_t
2025-03-05 05:06:56 +08:00
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
// layer is the graph layer that this context is allocating for - assumed to be cache
layer int
}
func (c *Context) Input() ml.Context {
2025-03-05 05:06:56 +08:00
if c.b.input != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.input,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: -1,
}
}
return c
}
func (c *Context) Layer(i int) ml.Context {
if layer, ok := c.b.layers[i]; ok {
return &Context{
b: c.b,
ctx: c.ctx,
buft: layer.bt,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: i,
}
}
return c
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
}
for _, tensor := range tensors {
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
}
return c
}
func (c *Context) Compute(tensors ...ml.Tensor) {
c.ComputeWithNotify(nil, tensors...)
}
func (c *Context) ComputeWithNotify(cb func(), tensors ...ml.Tensor) {
c.b.schedMu.Lock()
defer c.b.schedMu.Unlock()
if cb != nil {
go cb()
}
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
panic(fmt.Errorf("error computing ggml graph: %v", status))
}
2025-03-05 05:06:56 +08:00
C.ggml_backend_sched_reset(c.b.sched)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.b.sched)
needSync = false
}
}
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
}
func (c *Context) Reserve() {
reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
for _, bt := range c.b.schedBufts {
c.b.btDeviceMemory[bt].Graph = 0
}
for i := range c.b.schedBackends {
bufferSize := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
c.b.btDeviceMemory[c.b.schedBufts[i]].Graph += uint64(bufferSize)
logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferSize)))
}
if !reserved {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
}
func (c *Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = C.int64_t(s)
}
return &sh[0]
}
func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
2025-10-29 03:08:49 +08:00
func (c *Context) newTensor(dtype ml.DType, shape []int) *Tensor {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
}
cdtype := ggmlDType(dtype)
2025-03-05 05:06:56 +08:00
2025-03-08 03:19:03 +08:00
if len(shape) < 1 || shape[0] == 0 {
2025-03-05 05:06:56 +08:00
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
2025-03-05 05:06:56 +08:00
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
for _, dim := range shape {
if dim < 1 {
panic("invalid shape")
}
}
2025-03-05 05:06:56 +08:00
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if c.layer >= 0 {
c.b.btDeviceMemory[c.buft].Cache[c.layer] += uint64(size)
}
if b == nil {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
*c.allocatedBuffers = append(*c.allocatedBuffers, b)
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}
}
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return c.newTensor(dtype, shape)
}
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t := c.newTensor(dtype, shape)
if c.b.allocMemory {
2025-10-29 03:08:49 +08:00
C.ggml_set_zero(t.t)
}
return t
}
func checkShape[S ~[]E, E any](s S, shape ...int) {
n := len(s)
2025-03-08 03:19:03 +08:00
if n == 0 {
return
2025-03-08 03:19:03 +08:00
}
for _, v := range shape {
n /= v
}
if n != 1 {
panic(fmt.Errorf("invalid shape: %v", shape))
}
}
2025-10-29 03:08:49 +08:00
func (c Context) FromBytes(dtype ml.DType, s []uint8, shape ...int) ml.Tensor {
// Unchecked to handle quantized types
t := c.newTensor(dtype, shape)
if c.b.allocMemory {
t.FromBytes(s)
}
return t
}
func (c *Context) FromFloats(s []float32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t := c.newTensor(ml.DTypeF32, shape)
2025-10-29 03:08:49 +08:00
if c.b.allocMemory {
t.FromFloats(s)
2025-03-08 03:19:03 +08:00
}
return t
}
2025-10-29 03:08:49 +08:00
func (c *Context) FromInts(s []int32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t := c.newTensor(ml.DTypeI32, shape)
2025-10-29 03:08:49 +08:00
if c.b.allocMemory {
t.FromInts(s)
2025-03-08 03:19:03 +08:00
}
return t
}
2025-04-04 01:25:23 +08:00
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
switch dtype {
case ml.DTypeF32:
// ggml_arange creates a float32 tensor
return &Tensor{
b: c.b,
t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
}
case ml.DTypeI32:
// ggml_cast does not support float32 to int32 conversion
arange := make([]int32, 0, int((stop-start)/step))
for i := start; i < stop; i += step {
arange = append(arange, int32(i))
}
2025-10-29 03:08:49 +08:00
return c.Input().FromInts(arange, len(arange))
2025-04-04 01:25:23 +08:00
default:
panic("unsupported dtype for arange")
}
}
2025-03-05 05:06:56 +08:00
func (c *Context) Close() {
if c != nil {
for _, b := range *c.allocatedBuffers {
C.ggml_backend_buffer_free(b)
}
*c.allocatedBuffers = nil
C.ggml_free(c.ctx)
}
}
type Tensor struct {
b *Backend
t *C.struct_ggml_tensor
sync func()
}
func (t *Tensor) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
slog.Any("shape", t.Shape()),
)
}
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
}
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
return shape
}
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
2025-10-29 03:08:49 +08:00
func tensorSet[S ~[]E, E byte | float32 | int32](t *Tensor, s S) {
if len(s) == 0 {
return
}
if int(C.ggml_nbytes(t.t)) != len(s)*binary.Size(s[0]) {
panic("data size does not match tensor size")
}
2025-10-29 03:08:49 +08:00
C.ggml_backend_tensor_set(t.t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.t))
}
func (t *Tensor) FromBytes(s []byte) {
tensorSet(t, s)
}
func (t *Tensor) FromFloats(s []float32) {
tensorSet(t, s)
}
func (t *Tensor) FromInts(s []int32) {
tensorSet(t, s)
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_Q8_0:
return ml.DTypeQ80
case C.GGML_TYPE_Q4_0:
return ml.DTypeQ40
case C.GGML_TYPE_I32:
return ml.DTypeI32
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
case C.GGML_TYPE_MXFP4:
return ml.DTypeMXFP4
default:
return ml.DTypeOther
}
}
func ggmlDType(dtype ml.DType) uint32 {
switch dtype {
case ml.DTypeF32:
return C.GGML_TYPE_F32
case ml.DTypeF16:
return C.GGML_TYPE_F16
case ml.DTypeQ80:
return C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
return C.GGML_TYPE_Q4_0
case ml.DTypeI32:
return C.GGML_TYPE_I32
case ml.DTypeMXFP4:
return C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
}
func (t *Tensor) Cast(ctx ml.Context, dtype ml.DType) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cast(ctx.(*Context).ctx, t.t, ggmlDType(dtype)),
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
if dim < 0 || dim >= C.GGML_MAX_DIMS {
panic("invalid dimension")
}
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
for i := range C.GGML_MAX_DIMS {
if i == dim {
shape[i] = C.int64_t(t.Dim(i) * n)
} else {
shape[i] = C.int64_t(t.Dim(i))
}
}
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
return &Tensor{
b: t.b,
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
}
return t
}
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
}
}
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
func (t *Tensor) Contiguous(ctx ml.Context, shape ...int) ml.Tensor {
switch len(shape) {
case 0:
return &Tensor{
b: t.b,
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
}
case 1:
return &Tensor{
b: t.b,
t: C.ggml_cont_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_cont_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_cont_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_cont_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
b: t.b,
t: mul,
}
}
2025-04-04 06:18:29 +08:00
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
}
}
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
}
}
func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
2025-04-04 06:18:29 +08:00
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
if b != nil {
tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
}
}
2025-04-04 06:18:29 +08:00
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
2025-04-04 06:18:29 +08:00
tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
} else if shape[3] != 0 {
panic("cuda does not support 4d tensors")
}
return &Tensor{
b: t.b,
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
}
}
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
}
}
2025-04-04 06:18:29 +08:00
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]),
C.size_t(shape[1]),
C.size_t(offset)),
}
case 5:
return &Tensor{
b: t.b,
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
C.size_t(shape[1]), C.size_t(shape[3]),
C.size_t(offset)),
}
case 7:
return &Tensor{
b: t.b,
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
C.size_t(offset)),
}
default:
panic("unsupported number of dimensions")
}
}
2025-05-21 06:51:08 +08:00
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
2025-05-14 11:58:02 +08:00
// Default options
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
opts := rope.Options{
Factors: &Tensor{},
OriginalContextLength: 131072,
ExtrapolationFactor: 0.,
AttentionFactor: 1.,
BetaFast: 32.,
BetaSlow: 1.,
}
2025-05-14 11:58:02 +08:00
// Apply any provided options
for _, option := range options {
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
option(&opts)
2025-05-14 11:58:02 +08:00
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
return &Tensor{
b: t.b,
t: C.ggml_rope_ext(
2025-05-14 11:58:02 +08:00
ctx.(*Context).ctx,
dequant,
2025-05-21 06:51:08 +08:00
positions.(*Tensor).t,
opts.Factors.(*Tensor).t,
C.int(ropeDim),
2025-05-21 06:51:08 +08:00
C.int(opts.Type),
C.int(opts.OriginalContextLength),
C.float(ropeBase),
C.float(ropeScale),
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
C.float(opts.ExtrapolationFactor),
C.float(opts.AttentionFactor),
C.float(opts.BetaFast),
C.float(opts.BetaSlow),
),
}
}
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
}
}
func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_geglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
}
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) RELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_reglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
return &Tensor{
b: t.b,
t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILUAlphaLimit(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
return &Tensor{
b: t.b,
t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
2025-03-12 00:00:10 +08:00
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
2025-03-07 04:16:54 +08:00
return &Tensor{
b: t.b,
2025-03-12 00:00:10 +08:00
t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
2025-03-07 04:16:54 +08:00
}
}
2025-03-08 05:52:45 +08:00
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
var tt *C.struct_ggml_tensor
switch len(strides) {
case 0:
2025-03-08 09:38:36 +08:00
tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
2025-03-08 05:52:45 +08:00
case 1:
2025-03-08 09:38:36 +08:00
tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
2025-03-08 05:52:45 +08:00
default:
panic("unsupported number of dimensions")
}
return &Tensor{b: t.b, t: tt}
}
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, scale float64) ml.Tensor {
var kqMask *C.struct_ggml_tensor
if mask != nil {
kqMask = mask.(*Tensor).t
}
query := t.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
if t.b.flashAttention {
value = value.Permute(ctx, 0, 2, 1, 3)
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
if sinks != nil {
C.ggml_flash_attn_ext_add_sinks(kqv, sinks.(*Tensor).t)
}
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
return &Tensor{b: t.b, t: kqv}
} else {
kq := key.MulmatFullPrec(ctx, query)
kq = &Tensor{
b: t.b,
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
}
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
if sinks != nil {
C.ggml_soft_max_add_sinks(kq.(*Tensor).t, sinks.(*Tensor).t)
}
kqv := value.Mulmat(ctx, kq)
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
}
}
2025-04-04 06:18:29 +08:00
func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
}
}
2025-05-14 11:58:02 +08:00
func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
}
}
func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mean(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
Sqr(ctx).
SumRows(ctx).
Scale(ctx, 1/float64(t.Dim(0)))
}
func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
return t.Variance(ctx).Sqrt(ctx)
}
func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
}
}