ollama/model/models/gptoss/model.go

280 lines
9.6 KiB
Go
Raw Normal View History

gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
package gptoss
import (
"cmp"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Transformer struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TransformerBlocks []TransformerBlock `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
// Forward implements model.Model.
func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
one := ctx.Input().FromFloatSlice([]float32{1}, 1)
for i, block := range m.TransformerBlocks {
m.Cache.SetLayer(i)
if c, ok := m.Cache.(*kvcache.WrapperCache); ok {
// Even layers are sliding window attention.
c.SetLayerType(i % 2)
}
var outputs ml.Tensor
if i == len(m.TransformerBlocks)-1 {
outputs = batch.Outputs
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func (m *Transformer) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
}
type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength,
numExperts,
numExpertsUsed,
originalContextLength int
eps,
ropeBase,
ropeScale float32
}
func (o Options) RoPEOptions() []func(*rope.Options) {
return []func(*rope.Options){
rope.WithTypeNeoX(),
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
// NOTE: ggml sets this implicitly so there's no need to set it here
// rope.WithAttentionFactor(0.1*float32(math.Log(float64(o.ropeScale))) + 1.0),
}
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
type TransformerBlock struct {
Attention *AttentionBlock
MLP *MLPBlock
}
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs, one ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
}
hiddenStates = d.MLP.Forward(ctx, hiddenStates, one, opts)
return hiddenStates
}
type AttentionBlock struct {
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
Norm *nn.RMSNorm `gguf:"attn_norm"`
QKV *nn.Linear `gguf:"attn_qkv"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
Sinks ml.Tensor `gguf:"attn_sinks,alt:attn_sinks.weight"`
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
}
func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
residual := hiddenStates
hiddenStates = attn.Norm.Forward(ctx, hiddenStates, opts.eps)
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
var query, key, value ml.Tensor
if attn.QKV != nil {
qkv := attn.QKV.Forward(ctx, hiddenStates)
// query = qkv[..., : num_attention_heads * head_dim].reshape(batch_size, num_attention_heads, head_dim)
query = qkv.View(ctx,
0,
opts.headDim(), qkv.Stride(0)*opts.headDim(),
opts.numHeads, qkv.Stride(1),
batchSize,
)
// key = qkv[..., num_attention_heads * head_dim:(num_attention_heads + num_key_value_heads) * head_dim].reshape(batch_size, num_key_value_heads, head_dim)
key = qkv.View(ctx,
qkv.Stride(0)*opts.headDim()*opts.numHeads,
opts.headDim(), qkv.Stride(0)*opts.headDim(),
opts.numKVHeads, qkv.Stride(1),
batchSize,
)
// value = qkv[..., (num_attention_heads + num_key_value_heads) * head_dim:].reshape(batch_size, num_key_value_heads, head_dim)
value = qkv.View(ctx,
qkv.Stride(0)*opts.headDim()*(opts.numHeads+opts.numKVHeads),
opts.headDim(), qkv.Stride(0)*opts.headDim(),
opts.numKVHeads, qkv.Stride(1),
batchSize,
)
} else {
query = attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key = attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
value = attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
}
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
attention := nn.AttentionWithSinks(ctx, query, key, value, attn.Sinks, 1/math.Sqrt(float64(opts.headDim())), cache)
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return attn.Output.Forward(ctx, attention).Add(ctx, residual)
}
type MLPBlock struct {
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
Norm *nn.RMSNorm `gguf:"ffn_norm,alt:post_attention_norm"`
Router *nn.Linear `gguf:"ffn_gate_inp"`
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
GateUp *nn.LinearBatch `gguf:"ffn_gate_up_exps"`
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
}
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *Options) ml.Tensor {
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
residual := hiddenStates
hiddenStates = mlp.Norm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
routingWeights := mlp.Router.Forward(ctx, hiddenStates)
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, sequenceLength*batchSize).Rows(ctx, selectedExperts)
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, sequenceLength*batchSize).Softmax(ctx)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, sequenceLength*batchSize)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
var gate, up ml.Tensor
if mlp.GateUp != nil {
hiddenStates = mlp.GateUp.Forward(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.Reshape(ctx, 2, hiddenStates.Dim(0)/2, hiddenStates.Dim(1), hiddenStates.Dim(2))
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
dimStride := []int{hiddenStates.Dim(0) / 2, hiddenStates.Stride(1), hiddenStates.Dim(1), hiddenStates.Stride(2), hiddenStates.Dim(2), hiddenStates.Stride(3), hiddenStates.Dim(3)}
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
gate = hiddenStates.View(ctx, 0, dimStride...)
gate = gate.Contiguous(ctx, gate.Dim(0)*gate.Dim(1), gate.Dim(2), gate.Dim(3))
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
up = hiddenStates.View(ctx, hiddenStates.Stride(0), dimStride...)
up = up.Contiguous(ctx, up.Dim(0)*up.Dim(1), up.Dim(2), up.Dim(3))
} else {
gate = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts)
up = mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
}
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
hiddenStates = gate.SILUAlphaLimit(ctx, up, 1.702, 7)
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates.Add(ctx, residual)
}
func New(c fs.Config) (model.Model, error) {
m := Transformer{
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer",
strings.Join([]string{
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`\p{N}{1,3}`,
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
`\s*[\r\n]+`,
`\s+(?!\S)`,
`\s+`,
}, "|"),
),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1.),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
},
}
m.Cache = kvcache.NewWrapperCache(
kvcache.NewSWAMemCache(int32(c.Uint("attention.sliding_window")), 4096, m.Shift),
kvcache.NewCausalCache(m.Shift),
)
return &m, nil
}
func init() {
model.Register("gptoss", New)
update vendored llama.cpp and ggml (#11823) * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-15 05:42:58 +08:00
model.Register("gpt-oss", New)
gpt-oss (#11672) * bf16 * tests * gpt-oss * enable gptoss for engine * rough estimate * convert to mxfp4 * handle safetensors U8 * clamp glu/linear * update tokenizer * MXFP4 support This implements the Open Compute Microscaling (MX) FP4 format as a tensor type with backend implementations focusing on mulmat and mulmatid on CPU, CUDA, and Metal. * Unit tests for MXFP4 support This exercises various operations and shapes on both CPU and GPU (if detected on the system) * cuda graph * unit test adjustments * cuda: optimize memory access Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4 * mac: fix crash on old macos versions cblas_sgemm is only supported on v13.3 and up, however bf16 is only supported on v14+ so we were falling back to ggml-blas and crashing on bf16 tensors. Checking for the function being null seems to be the simplest way to condittionally avoid registering the backend. * server: Minimum context length for gptoss This model requires a minimum context length of 8192 to function effectively. Users can set higher values through all normal mechanisms but lower values will be silently reset. * ggml: Multiply by numParallel for gptoss sliding window When computing the graph size estimate, the context size is already multiplied by numParallel so estimates reflect that. However, since sliding window models use a smaller, fixed context size, they need to manually take numParallel into account. * gpt-oss integration includes harmony parser and thinking levels, etc. * fix sync * fix tests * fix lint --------- Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-06 03:21:16 +08:00
}