ollama/server/sched.go

790 lines
25 KiB
Go
Raw Normal View History

package server
import (
"context"
"errors"
"fmt"
"log/slog"
2024-07-04 10:41:17 +08:00
"os"
"reflect"
"runtime"
"slices"
"sort"
2024-07-04 10:41:17 +08:00
"strconv"
"strings"
"sync"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
2024-05-22 12:30:52 +08:00
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/types/model"
)
type LlmRequest struct {
ctx context.Context //nolint:containedctx
model *Model
opts api.Options
sessionDuration *api.Duration
successCh chan *runnerRef
errCh chan error
schedAttempts uint
}
type Scheduler struct {
pendingReqCh chan *LlmRequest
finishedReqCh chan *LlmRequest
expiredCh chan *runnerRef
unloadedCh chan any
// loadedMu protects loaded and activeLoading
loadedMu sync.Mutex
// activeLoading is the model that we are currently working on loading,
// including by evicting one or more other models. We can only load
// one model at a time but new requests to models that already loaded can
// happen in parallel
activeLoading llm.LlamaServer
loaded map[string]*runnerRef
loadFn func(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, requireFull bool) bool
newServerFn func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
getGpuFn func() discover.GpuInfoList
getCpuFn func() discover.GpuInfoList
reschedDelay time.Duration
}
// Default automatic value for number of models we allow per GPU
// Model will still need to fit in VRAM, but loading many small models
// on a large GPU can cause stalling
var defaultModelsPerGPU = 3
2024-08-02 05:52:15 +08:00
var ErrMaxQueue = errors.New("server busy, please try again. maximum pending requests exceeded")
func InitScheduler(ctx context.Context) *Scheduler {
2024-07-04 10:41:17 +08:00
maxQueue := envconfig.MaxQueue()
sched := &Scheduler{
2024-07-04 10:41:17 +08:00
pendingReqCh: make(chan *LlmRequest, maxQueue),
finishedReqCh: make(chan *LlmRequest, maxQueue),
expiredCh: make(chan *runnerRef, maxQueue),
unloadedCh: make(chan any, maxQueue),
loaded: make(map[string]*runnerRef),
newServerFn: llm.NewLlamaServer,
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
}
sched.loadFn = sched.load
return sched
}
// context must be canceled to decrement ref count and release the runner
func (s *Scheduler) GetRunner(c context.Context, m *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
if m.CheckCapabilities(model.CapabilityVision) == nil {
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
req := &LlmRequest{
ctx: c,
model: m,
opts: opts,
sessionDuration: sessionDuration,
successCh: make(chan *runnerRef, 1),
errCh: make(chan error, 1),
}
s.loadedMu.Lock()
runner := s.loaded[req.model.ModelPath]
s.loadedMu.Unlock()
if runner != nil && !runner.needsReload(c, req) {
req.useLoadedRunner(runner, s.finishedReqCh)
} else {
select {
case s.pendingReqCh <- req:
default:
req.errCh <- ErrMaxQueue
}
}
return req.successCh, req.errCh
}
// Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
func (s *Scheduler) Run(ctx context.Context) {
slog.Debug("starting llm scheduler")
go func() {
s.processPending(ctx)
}()
go func() {
s.processCompleted(ctx)
}()
}
func (s *Scheduler) processPending(ctx context.Context) {
for {
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler pending loop")
return
case pending := <-s.pendingReqCh:
// Block other requests until we get this pending request running
pending.schedAttempts++
if pending.ctx.Err() != nil {
slog.Debug("pending request cancelled or timed out, skipping scheduling")
continue
}
for {
var runnerToExpire *runnerRef
s.loadedMu.Lock()
runner := s.loaded[pending.model.ModelPath]
loadedCount := len(s.loaded)
s.loadedMu.Unlock()
if runner != nil {
if runner.needsReload(ctx, pending) {
slog.Debug("reloading", "runner", runner)
runnerToExpire = runner
} else {
// Runner is usable, return it
pending.useLoadedRunner(runner, s.finishedReqCh)
break
}
2024-07-09 01:34:12 +08:00
} else if envconfig.MaxRunners() > 0 && loadedCount >= int(envconfig.MaxRunners()) {
slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
2024-05-06 08:18:27 +08:00
runnerToExpire = s.findRunnerToUnload()
} else {
// Either no models are loaded or below envconfig.MaxRunners
// Get a refreshed GPU list
var gpus discover.GpuInfoList
if pending.opts.NumGPU == 0 {
gpus = s.getCpuFn()
} else {
gpus = s.getGpuFn()
}
2024-07-04 10:41:17 +08:00
if envconfig.MaxRunners() <= 0 {
// No user specified MaxRunners, so figure out what automatic setting to use
// If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
// if any GPU has unreliable free memory reporting, 1x the number of GPUs
allReliable := true
for _, gpu := range gpus {
if gpu.UnreliableFreeMemory {
allReliable = false
break
}
}
if allReliable {
2024-07-04 10:41:17 +08:00
// HACK
os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(defaultModelsPerGPU*len(gpus)))
slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners(), "gpu_count", len(gpus))
} else {
2024-07-04 10:41:17 +08:00
// HACK
os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(len(gpus)))
slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
}
}
2024-04-25 07:37:03 +08:00
// Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath, 1024)
if err != nil {
pending.errCh <- err
break
}
2024-04-25 07:37:03 +08:00
// Update free memory from currently loaded models
s.updateFreeSpace(gpus)
if loadedCount == 0 {
// No models loaded. Load the model but prefer the best fit.
2024-04-25 07:37:03 +08:00
slog.Debug("loading first model", "model", pending.model.ModelPath)
s.loadFn(pending, ggml, gpus, false)
2024-04-25 07:37:03 +08:00
break
}
// More than one loaded model, so we have to see if the
// new one fits
needEvict := s.loadFn(pending, ggml, gpus, true)
if !needEvict {
slog.Debug("new model fits with existing models, loading")
break
}
runnerToExpire = s.findRunnerToUnload()
}
if runnerToExpire == nil {
// Shouildn't happen
slog.Error("runner to expire was nil!")
continue
}
// Trigger an expiration to unload once it's done
runnerToExpire.refMu.Lock()
slog.Debug("resetting model to expire immediately to make room", "runner", runnerToExpire, "refCount", runnerToExpire.refCount)
if runnerToExpire.expireTimer != nil {
runnerToExpire.expireTimer.Stop()
runnerToExpire.expireTimer = nil
}
runnerToExpire.sessionDuration = 0
if runnerToExpire.refCount <= 0 {
s.expiredCh <- runnerToExpire
}
runnerToExpire.refMu.Unlock()
// Wait for the unload to happen
slog.Debug("waiting for pending requests to complete and unload to occur", "runner", runnerToExpire)
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler pending loop")
return
case <-s.unloadedCh:
slog.Debug("unload completed", "runner", runnerToExpire)
continue
}
}
case <-s.unloadedCh:
// An unload request when there are no pending request can be ignored
slog.Debug("ignoring unload event with no pending requests")
}
}
}
func (s *Scheduler) processCompleted(ctx context.Context) {
// Process completed requests, expired timers, and unloading models
for {
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler completed loop")
return
case finished := <-s.finishedReqCh:
s.loadedMu.Lock()
runner := s.loaded[finished.model.ModelPath]
s.loadedMu.Unlock()
if runner == nil {
slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
continue
}
runner.refMu.Lock()
runner.refCount--
if runner.refCount <= 0 {
if runner.sessionDuration <= 0 {
slog.Debug("runner with zero duration has gone idle, expiring to unload", "runner", runner)
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
s.expiredCh <- runner
} else if runner.expireTimer == nil {
slog.Debug("runner with non-zero duration has gone idle, adding timer", "runner", runner, "duration", runner.sessionDuration)
runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
slog.Debug("timer expired, expiring to unload", "runner", runner)
runner.refMu.Lock()
defer runner.refMu.Unlock()
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
s.expiredCh <- runner
})
runner.expiresAt = time.Now().Add(runner.sessionDuration)
} else {
slog.Debug("runner with non-zero duration has gone idle, resetting timer", "runner", runner, "duration", runner.sessionDuration)
runner.expireTimer.Reset(runner.sessionDuration)
runner.expiresAt = time.Now().Add(runner.sessionDuration)
}
}
slog.Debug("after processing request finished event", "runner", runner, "refCount", runner.refCount)
runner.refMu.Unlock()
case runner := <-s.expiredCh:
slog.Debug("runner expired event received", "runner", runner)
runner.refMu.Lock()
if runner.refCount > 0 {
slog.Debug("expired event with positive ref count, retrying", "runner", runner, "refCount", runner.refCount)
go func(runner *runnerRef) {
// We can't unload yet, but want to as soon as the current request completes
// So queue up another expired event
time.Sleep(10 * time.Millisecond)
s.expiredCh <- runner
}(runner)
runner.refMu.Unlock()
continue
}
2024-05-06 08:18:27 +08:00
s.loadedMu.Lock()
slog.Debug("got lock to unload expired event", "runner", runner)
runnerToUnload := s.loaded[runner.modelPath]
if runnerToUnload == nil {
// If runnerToUnload is nil, we already processed an event and
// unloaded it. This double unload can happen if the initial
// request is canceled and we're trying to load another model
// that requires this one to be evicted, or the settings change
// and require a reload
s.loadedMu.Unlock()
runner.refMu.Unlock()
slog.Debug("duplicate expired event, ignoring", "runner", runner)
} else if runner.pid != runnerToUnload.pid {
// If the pids do not match, we likely had multiple load
// failures for the same model in quick succession due to
// request context canceled and are draining the queue of
// events. Ensure the orphaned runner is properly shut down, but
// do not delete the mismatched loaded runner, or wait for VRAM
// convergence.
slog.Debug("orphaned runner shutting down", "orphan", runner, "loaded", runnerToUnload)
runner.unload()
s.loadedMu.Unlock()
runner.refMu.Unlock()
} else {
slog.Debug("starting background wait for VRAM recovery", "runner", runner)
finished := runner.waitForVRAMRecovery()
runner.unload()
delete(s.loaded, runner.modelPath)
s.loadedMu.Unlock()
slog.Debug("runner terminated and removed from list, blocking for VRAM recovery", "runner", runner)
<-finished
runner.refMu.Unlock()
slog.Debug("sending an unloaded event", "runner", runner)
s.unloadedCh <- struct{}{}
}
}
}
}
// Complete the pending request and send the runner back to the requester
// Wires up a finished event after the request context is completed
// Updates session duration, and resets expiration timer
func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
runner.refMu.Lock()
defer runner.refMu.Unlock()
runner.refCount++
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
if pending.sessionDuration != nil {
runner.sessionDuration = pending.sessionDuration.Duration
}
pending.successCh <- runner
go func() {
<-pending.ctx.Done()
slog.Debug("context for request finished", "runner", runner)
finished <- pending
}()
}
// load creates a new model based on req and loads it. If requireFull is true then the model must be loaded fully onto GPUs
// (if any). Returns whether the scheduler needs to evict a model to make this one fit.
func (s *Scheduler) load(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, requireFull bool) bool {
numParallel := int(envconfig.NumParallel())
if numParallel < 1 {
numParallel = 1
}
// Embedding models should always be loaded with parallel=1
if req.model.CheckCapabilities(model.CapabilityCompletion) != nil {
numParallel = 1
}
// `mllama` is a snowflake and uses an encoder cache which cannot be used with num_parallel > 1
// ref: https://github.com/ollama/ollama/issues/4165
if slices.Contains(req.model.Config.ModelFamilies, "mllama") && numParallel != 1 {
numParallel = 1
slog.Warn("mllama does not currently support parallel requests")
}
2024-07-04 09:39:35 +08:00
sessionDuration := envconfig.KeepAlive()
if req.sessionDuration != nil {
sessionDuration = req.sessionDuration.Duration
}
s.loadedMu.Lock()
llama := s.activeLoading
if llama == nil {
var err error
llama, err = s.newServerFn(gpus, req.model.ModelPath, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
if err != nil {
// some older models are not compatible with newer versions of llama.cpp
// show a generalized compatibility error until there is a better way to
// check for model compatibility
if errors.Is(err, ggml.ErrUnsupportedFormat) || strings.Contains(err.Error(), "failed to load model") {
err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
}
slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
req.errCh <- err
s.loadedMu.Unlock()
return false
}
s.activeLoading = llama
} else {
if s.activeLoading.ModelPath() != req.model.ModelPath {
panic(fmt.Errorf("attempting to load different model after eviction (original %v new %v)", s.activeLoading.ModelPath(), req.model.ModelPath))
}
}
s.loadedMu.Unlock()
err := llama.Load(req.ctx, gpus, requireFull)
if err != nil {
if errors.Is(err, llm.ErrLoadRequiredFull) {
return true
}
slog.Info("Load failed", "model", req.model.ModelPath, "error", err)
s.activeLoading.Close()
s.activeLoading = nil
req.errCh <- err
return false
}
runner := &runnerRef{
model: req.model,
modelPath: req.model.ModelPath,
llama: llama,
Options: &req.opts,
sessionDuration: sessionDuration,
gpus: gpus,
vramSize: llama.VRAMSize(),
totalSize: llama.TotalSize(),
loading: true,
pid: llama.Pid(),
}
runner.numParallel = numParallel
runner.refMu.Lock() // hold lock until running or aborted
s.loadedMu.Lock()
if oldRunner, ok := s.loaded[req.model.ModelPath]; ok {
// Shouldn't happen, but safeguard against leaking a runner
slog.Warn("model was still loaded", "old_runner", oldRunner, "new_runner", runner)
oldRunner.refMu.Lock()
oldRunner.unload()
oldRunner.refMu.Unlock()
}
s.activeLoading = nil
s.loaded[req.model.ModelPath] = runner
slog.Info("loaded runners", "count", len(s.loaded))
s.loadedMu.Unlock()
go func() {
defer runner.refMu.Unlock()
if err = llama.WaitUntilRunning(req.ctx); err != nil {
slog.Error("error loading llama server", "error", err)
req.errCh <- err
slog.Debug("triggering expiration for failed load", "runner", runner)
s.expiredCh <- runner
return
}
slog.Debug("finished setting up", "runner", runner)
if runner.pid < 0 {
runner.pid = llama.Pid()
}
runner.refCount++
runner.loading = false
go func() {
<-req.ctx.Done()
slog.Debug("context for request finished")
s.finishedReqCh <- req
}()
req.successCh <- runner
}()
return false
}
func (s *Scheduler) updateFreeSpace(allGpus discover.GpuInfoList) {
type predKey struct {
Library string
ID string
}
predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
s.loadedMu.Lock()
runners := make([]*runnerRef, 0, len(s.loaded))
for _, r := range s.loaded {
runners = append(runners, r)
}
s.loadedMu.Unlock()
for _, r := range runners {
r.refMu.Lock()
if r.llama != nil {
for _, gpu := range allGpus {
predMap[predKey{gpu.Library, gpu.ID}] += r.llama.VRAMByGPU(gpu.ID)
}
} else {
slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
}
r.refMu.Unlock()
}
// Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
for i := range allGpus {
if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
if p > allGpus[i].TotalMemory {
// Shouldn't happen
slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
allGpus[i].FreeMemory = 0
} else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
// TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
// and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
// after we start our first runner, then we'll never account for that, so picking the smallest free value seems prudent.
allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
}
slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
}
}
}
// TODO consolidate sched_types.go
type runnerRef struct {
refMu sync.Mutex
refCount uint // prevent unloading if > 0
llama llm.LlamaServer
pid int
loading bool // True only during initial load, then false forever
gpus discover.GpuInfoList // Recorded at time of provisioning
vramSize uint64
totalSize uint64
sessionDuration time.Duration
expireTimer *time.Timer
expiresAt time.Time
model *Model
modelPath string
numParallel int
*api.Options
}
// The refMu must already be held when calling unload
func (runner *runnerRef) unload() {
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
if runner.llama != nil {
runner.llama.Close()
}
runner.model = nil
runner.llama = nil
runner.Options = nil
runner.gpus = nil
}
func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
runner.refMu.Lock()
defer runner.refMu.Unlock()
timeout := 10 * time.Second
if runner.loading {
timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
}
if runner.Options == nil {
return true
}
// Don't reload runner if num_gpu=-1 was provided
optsExisting := runner.Options.Runner
optsNew := req.opts.Runner
if optsNew.NumGPU < 0 {
optsExisting.NumGPU = -1
optsNew.NumGPU = -1
}
ctx, cancel := context.WithTimeout(ctx, timeout)
defer cancel()
if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
!reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
!reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
runner.llama.Ping(ctx) != nil {
return true
}
return false
}
// Free memory reporting on GPUs can lag for a while even after the runner
// exits, so we have to keep checking until we see the available memory recover,
// otherwise subsequent model loads will get far less layers loaded or worse
// case, may completely fall back to CPU mode.
// This routine must be called before the runner unloads so it can establish
// a before and after GPU memory allocation. The returned channel
// will be notified when we're done waiting, or have timed out and should
// proceed anyway
func (runner *runnerRef) waitForVRAMRecovery() chan any {
finished := make(chan any, 1)
// CPU or Metal don't need checking, so no waiting required
// windows can page VRAM, only cuda currently can report accurate used vram usage
if len(runner.gpus) == 0 ||
(len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
(runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
finished <- struct{}{}
slog.Debug("no need to wait for VRAM recovery", "runner", runner)
return finished
}
start := time.Now()
// Establish a baseline before we unload
gpusBefore := discover.GetGPUInfo()
var totalMemoryBefore, freeMemoryBefore uint64
for _, gpu := range gpusBefore {
totalMemoryBefore += gpu.TotalMemory
freeMemoryBefore += gpu.FreeMemory
}
go func() {
expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
ticker := time.NewTicker(250 * time.Millisecond)
defer ticker.Stop()
for {
<-ticker.C
if time.Now().After(expiresAt) {
slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "runner", runner)
finished <- struct{}{}
}
// Query GPUs, look for free to go back up
gpusNow := discover.GetGPUInfo()
var totalMemoryNow, freeMemoryNow uint64
for _, gpu := range gpusNow {
totalMemoryNow += gpu.TotalMemory
freeMemoryNow += gpu.FreeMemory
}
// If we're within ~80% of the estimated memory usage recovered, bail out
if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.vramSize)*0.8 {
slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "runner", runner)
finished <- struct{}{}
return
}
}
}()
return finished
}
func (runner *runnerRef) LogValue() slog.Value {
if runner == nil {
return slog.StringValue("nil")
}
attrs := []slog.Attr{}
if runner.model != nil {
attrs = append(attrs, slog.String("name", runner.model.Name))
}
if len(runner.gpus) > 0 {
attrs = append(attrs,
slog.String("inference", runner.gpus[0].Library),
slog.Int("devices", len(runner.gpus)),
)
}
attrs = append(attrs,
slog.String("size", format.HumanBytes2(runner.totalSize)),
slog.String("vram", format.HumanBytes2(runner.vramSize)),
slog.Int("parallel", runner.numParallel),
slog.Int("pid", runner.pid),
slog.String("model", runner.modelPath),
)
if runner.Options != nil {
attrs = append(attrs, slog.Int("num_ctx", runner.Options.NumCtx))
}
return slog.GroupValue(attrs...)
}
type ByDurationAndName []*runnerRef
func (a ByDurationAndName) Len() int { return len(a) }
func (a ByDurationAndName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDurationAndName) Less(i, j int) bool {
// Primary sort by session duration (uint64 to handle negatives)
d1 := uint64(a[i].sessionDuration)
d2 := uint64(a[j].sessionDuration)
if d1 != d2 {
return d1 < d2
}
// Secondary sort by model path lex order
return a[i].modelPath < a[j].modelPath
}
// TODO - future consideration to pick runners based on size
// type BySize []*runnerRef
// func (a BySize) Len() int { return len(a) }
// func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// func (a BySize) Less(i, j int) bool { return a[i].vramSize < a[j].vramSize }
// findRunnerToUnload finds a runner to unload to make room for a new model
2024-05-06 08:18:27 +08:00
func (s *Scheduler) findRunnerToUnload() *runnerRef {
s.loadedMu.Lock()
runnerList := make([]*runnerRef, 0, len(s.loaded))
for _, r := range s.loaded {
runnerList = append(runnerList, r)
}
s.loadedMu.Unlock()
2024-05-31 07:43:40 +08:00
if len(runnerList) == 0 {
slog.Debug("no loaded runner to unload")
return nil
}
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
// e.g., if we have multiple options, will one make room for the request?
sort.Sort(ByDurationAndName(runnerList))
// First try to find a runner that's already idle
for _, runner := range runnerList {
runner.refMu.Lock()
rc := runner.refCount
runner.refMu.Unlock()
if rc == 0 {
slog.Debug("found an idle runner to unload", "runner", runner)
return runner
}
}
// None appear idle, just wait for the one with the shortest duration
slog.Debug("no idle runners, picking the shortest duration", "runner_count", len(runnerList), "runner", runnerList[0])
return runnerList[0]
}
func (s *Scheduler) unloadAllRunners() {
s.loadedMu.Lock()
defer s.loadedMu.Unlock()
if s.activeLoading != nil {
slog.Debug("shutting down currently loading runner")
s.activeLoading.Close()
s.activeLoading = nil
}
for model, runner := range s.loaded {
if runner.llama != nil {
slog.Debug("shutting down runner", "model", model)
runner.llama.Close()
}
}
}
2024-09-12 07:36:21 +08:00
func (s *Scheduler) expireRunner(model *Model) {
s.loadedMu.Lock()
runner, ok := s.loaded[model.ModelPath]
s.loadedMu.Unlock()
2024-09-12 07:36:21 +08:00
if ok {
runner.refMu.Lock()
runner.expiresAt = time.Now()
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
runner.sessionDuration = 0
if runner.refCount <= 0 {
s.expiredCh <- runner
}
runner.refMu.Unlock()
}
}