Merge branch 'ollama:main' into ollama-bash-lib

This commit is contained in:
Attogram Project 2025-10-02 14:05:31 +02:00 committed by GitHub
commit b59875c04c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
114 changed files with 6472 additions and 4674 deletions

1
.gitignore vendored
View File

@ -6,6 +6,7 @@
dist
build
.cache
.gocache
*.exe
.idea
test_data

View File

@ -98,14 +98,17 @@ check_language(HIP)
if(CMAKE_HIP_COMPILER)
set(HIP_PLATFORM "amd")
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
find_package(hip REQUIRED)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
endif()
if(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()
if(AMDGPU_TARGETS)
find_package(hip REQUIRED)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
@ -114,7 +117,6 @@ if(CMAKE_HIP_COMPILER)
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCY_SET rocm
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
@ -125,13 +127,13 @@ if(CMAKE_HIP_COMPILER)
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP)
break()
endif()
endforeach()

View File

@ -1,6 +1,7 @@
# vim: filetype=dockerfile
ARG FLAVOR=${TARGETARCH}
ARG PARALLEL=8
ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
@ -34,46 +35,51 @@ ENV LDFLAGS=-s
FROM base AS cpu
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel ${PARALLEL}
FROM base AS cuda-11
ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-13
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
&& cmake --build --parallel --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
cmake --preset 'ROCm 6' -DOLLAMA_RUNNER_DIR="rocm" \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
@ -81,10 +87,11 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'JetPack 5' -DOLLAMA_RUNNER_DIR="cuda_jetpack5" \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
@ -92,10 +99,11 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'JetPack 6' -DOLLAMA_RUNNER_DIR="cuda_jetpack6" \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
@ -120,8 +128,8 @@ FROM --platform=linux/arm64 scratch AS arm64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6
COPY --from=jetpack-5 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-6 dist/lib/ollama/ /lib/ollama/
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama /lib/ollama

View File

@ -45,6 +45,12 @@ func checkError(resp *http.Response, body []byte) error {
return nil
}
if resp.StatusCode == http.StatusUnauthorized {
authError := AuthorizationError{StatusCode: resp.StatusCode}
json.Unmarshal(body, &authError)
return authError
}
apiError := StatusError{StatusCode: resp.StatusCode}
err := json.Unmarshal(body, &apiError)
@ -214,7 +220,8 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
scanner.Buffer(scanBuf, maxBufferSize)
for scanner.Scan() {
var errorResponse struct {
Error string `json:"error,omitempty"`
Error string `json:"error,omitempty"`
SigninURL string `json:"signin_url,omitempty"`
}
bts := scanner.Bytes()
@ -223,14 +230,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
if response.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
return AuthorizationError{
StatusCode: response.StatusCode,
Status: response.Status,
PublicKey: pubKey,
SigninURL: errorResponse.SigninURL,
}
} else if response.StatusCode >= http.StatusBadRequest {
return StatusError{
@ -439,8 +442,13 @@ func (c *Client) Version(ctx context.Context) (string, error) {
return version.Version, nil
}
// Signout will disconnect an ollama instance from ollama.com
func (c *Client) Signout(ctx context.Context, encodedKey string) error {
// Signout will signout a client for a local ollama server.
func (c *Client) Signout(ctx context.Context) error {
return c.do(ctx, http.MethodPost, "/api/signout", nil, nil)
}
// Disconnect will disconnect an ollama instance from ollama.com.
func (c *Client) Disconnect(ctx context.Context, encodedKey string) error {
return c.do(ctx, http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey), nil, nil)
}

View File

@ -41,7 +41,7 @@ func (e StatusError) Error() string {
type AuthorizationError struct {
StatusCode int
Status string
PublicKey string `json:"public_key"`
SigninURL string `json:"signin_url"`
}
func (e AuthorizationError) Error() string {

View File

@ -18,34 +18,13 @@ import (
const defaultPrivateKey = "id_ed25519"
func keyPath() (string, error) {
fileExists := func(fp string) bool {
info, err := os.Stat(fp)
if err != nil {
return false
}
return !info.IsDir()
}
systemPath := filepath.Join("/usr/share/ollama/.ollama", defaultPrivateKey)
if fileExists(systemPath) {
return systemPath, nil
}
func GetPublicKey() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", defaultPrivateKey), nil
}
func GetPublicKey() (string, error) {
keyPath, err := keyPath()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
@ -72,11 +51,12 @@ func NewNonce(r io.Reader, length int) (string, error) {
}
func Sign(ctx context.Context, bts []byte) (string, error) {
keyPath, err := keyPath()
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))

View File

@ -5,7 +5,6 @@ import (
"context"
"crypto/ed25519"
"crypto/rand"
"encoding/base64"
"encoding/json"
"encoding/pem"
"errors"
@ -15,7 +14,6 @@ import (
"math"
"net"
"net/http"
"net/url"
"os"
"os/signal"
"path/filepath"
@ -37,7 +35,6 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
@ -50,7 +47,7 @@ import (
"github.com/ollama/ollama/version"
)
const ConnectInstructions = "To sign in, navigate to:\n https://ollama.com/connect?name=%s&key=%s\n\n"
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
@ -452,16 +449,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError
if errors.As(err, &sErr) && sErr.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
// the server and the client both have the same public key
if pubKey == sErr.PublicKey {
h, _ := os.Hostname()
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
fmt.Printf("You need to be signed in to Ollama to run Cloud models.\n\n")
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
fmt.Printf("You need to be signed in to Ollama to run Cloud models.\n\n")
if sErr.SigninURL != "" {
fmt.Printf(ConnectInstructions, sErr.SigninURL)
}
return nil
}
@ -493,6 +484,16 @@ func SigninHandler(cmd *cobra.Command, args []string) error {
user, err := client.Whoami(cmd.Context())
if err != nil {
var aErr api.AuthorizationError
if errors.As(err, &aErr) && aErr.StatusCode == http.StatusUnauthorized {
fmt.Println("You need to be signed in to Ollama to run Cloud models.")
fmt.Println()
if aErr.SigninURL != "" {
fmt.Printf(ConnectInstructions, aErr.SigninURL)
}
return nil
}
return err
}
@ -502,34 +503,27 @@ func SigninHandler(cmd *cobra.Command, args []string) error {
return nil
}
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
h, _ := os.Hostname()
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
return nil
}
func SignoutHandler(cmd *cobra.Command, args []string) error {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
err = client.Signout(cmd.Context(), encKey)
err = client.Signout(cmd.Context())
if err != nil {
return err
var aErr api.AuthorizationError
if errors.As(err, &aErr) && aErr.StatusCode == http.StatusUnauthorized {
fmt.Println("You are not signed in to ollama.com")
fmt.Println()
return nil
} else {
return err
}
}
fmt.Println("You have signed out of ollama.com")
fmt.Println()
return nil
@ -546,6 +540,25 @@ func PushHandler(cmd *cobra.Command, args []string) error {
return err
}
n := model.ParseName(args[0])
if strings.HasSuffix(n.Host, ".ollama.ai") || strings.HasSuffix(n.Host, ".ollama.com") {
_, err := client.Whoami(cmd.Context())
if err != nil {
var aErr api.AuthorizationError
if errors.As(err, &aErr) && aErr.StatusCode == http.StatusUnauthorized {
fmt.Println("You need to be signed in to push models to ollama.com.")
fmt.Println()
if aErr.SigninURL != "" {
fmt.Printf(ConnectInstructions, aErr.SigninURL)
}
return nil
}
return err
}
}
p := progress.NewProgress(os.Stderr)
defer p.Stop()
@ -582,7 +595,6 @@ func PushHandler(cmd *cobra.Command, args []string) error {
request := api.PushRequest{Name: args[0], Insecure: insecure}
n := model.ParseName(args[0])
if err := client.Push(cmd.Context(), &request, fn); err != nil {
if spinner != nil {
spinner.Stop()
@ -1106,6 +1118,51 @@ type runOptions struct {
ShowConnect bool
}
func (r runOptions) Copy() runOptions {
var messages []api.Message
if r.Messages != nil {
messages = make([]api.Message, len(r.Messages))
copy(messages, r.Messages)
}
var images []api.ImageData
if r.Images != nil {
images = make([]api.ImageData, len(r.Images))
copy(images, r.Images)
}
var opts map[string]any
if r.Options != nil {
opts = make(map[string]any, len(r.Options))
for k, v := range r.Options {
opts[k] = v
}
}
var think *api.ThinkValue
if r.Think != nil {
cThink := *r.Think
think = &cThink
}
return runOptions{
Model: r.Model,
ParentModel: r.ParentModel,
Prompt: r.Prompt,
Messages: messages,
WordWrap: r.WordWrap,
Format: r.Format,
System: r.System,
Images: images,
Options: opts,
MultiModal: r.MultiModal,
KeepAlive: r.KeepAlive,
Think: think,
HideThinking: r.HideThinking,
ShowConnect: r.ShowConnect,
}
}
type displayResponseState struct {
lineLength int
wordBuffer string

View File

@ -8,6 +8,7 @@ import (
"net/http"
"net/http/httptest"
"os"
"reflect"
"strings"
"testing"
"time"
@ -491,9 +492,35 @@ func TestPushHandler(t *testing.T) {
w.(http.Flusher).Flush()
}
},
"/api/me": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
},
},
expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n",
},
{
name: "not signed in push",
modelName: "notsignedin-model",
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
"/api/me": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "unauthorized",
"signin_url": "https://somethingsomething",
})
if err != nil {
t.Fatal(err)
}
},
},
expectedOutput: "You need to be signed in to push",
},
{
name: "unauthorized push",
modelName: "unauthorized-model",
@ -508,6 +535,11 @@ func TestPushHandler(t *testing.T) {
t.Fatal(err)
}
},
"/api/me": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
},
},
expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own",
},
@ -525,6 +557,9 @@ func TestPushHandler(t *testing.T) {
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
tmpDir := t.TempDir()
t.Setenv("HOME", tmpDir)
t.Setenv("USERPROFILE", tmpDir)
initializeKeypair()
cmd := &cobra.Command{}
@ -561,7 +596,7 @@ func TestPushHandler(t *testing.T) {
t.Errorf("expected no error, got %v", err)
}
if tt.expectedOutput != "" {
if got := string(stdout); got != tt.expectedOutput {
if got := string(stdout); !strings.Contains(got, tt.expectedOutput) {
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
}
}
@ -919,3 +954,286 @@ func TestNewCreateRequest(t *testing.T) {
})
}
}
func TestRunOptions_Copy(t *testing.T) {
// Setup test data
originalKeepAlive := &api.Duration{Duration: 5 * time.Minute}
originalThink := &api.ThinkValue{Value: "test reasoning"}
original := runOptions{
Model: "test-model",
ParentModel: "parent-model",
Prompt: "test prompt",
Messages: []api.Message{
{Role: "user", Content: "hello"},
{Role: "assistant", Content: "hi there"},
},
WordWrap: true,
Format: "json",
System: "system prompt",
Images: []api.ImageData{
[]byte("image1"),
[]byte("image2"),
},
Options: map[string]any{
"temperature": 0.7,
"max_tokens": 1000,
"top_p": 0.9,
},
MultiModal: true,
KeepAlive: originalKeepAlive,
Think: originalThink,
HideThinking: false,
ShowConnect: true,
}
// Test the copy
copied := original.Copy()
// Test 1: Verify the copy is not the same instance
if &copied == &original {
t.Error("Copy should return a different instance")
}
// Test 2: Verify all fields are copied correctly
tests := []struct {
name string
got interface{}
want interface{}
}{
{"Model", copied.Model, original.Model},
{"ParentModel", copied.ParentModel, original.ParentModel},
{"Prompt", copied.Prompt, original.Prompt},
{"WordWrap", copied.WordWrap, original.WordWrap},
{"Format", copied.Format, original.Format},
{"System", copied.System, original.System},
{"MultiModal", copied.MultiModal, original.MultiModal},
{"HideThinking", copied.HideThinking, original.HideThinking},
{"ShowConnect", copied.ShowConnect, original.ShowConnect},
}
for _, tt := range tests {
if !reflect.DeepEqual(tt.got, tt.want) {
t.Errorf("%s mismatch: got %v, want %v", tt.name, tt.got, tt.want)
}
}
// Test 3: Verify Messages slice is deeply copied
if len(copied.Messages) != len(original.Messages) {
t.Errorf("Messages length mismatch: got %d, want %d", len(copied.Messages), len(original.Messages))
}
if len(copied.Messages) > 0 && &copied.Messages[0] == &original.Messages[0] {
t.Error("Messages should be different instances")
}
// Modify original to verify independence
if len(original.Messages) > 0 {
originalContent := original.Messages[0].Content
original.Messages[0].Content = "modified"
if len(copied.Messages) > 0 && copied.Messages[0].Content == "modified" {
t.Error("Messages should be independent after copy")
}
// Restore for other tests
original.Messages[0].Content = originalContent
}
// Test 4: Verify Images slice is deeply copied
if len(copied.Images) != len(original.Images) {
t.Errorf("Images length mismatch: got %d, want %d", len(copied.Images), len(original.Images))
}
if len(copied.Images) > 0 && &copied.Images[0] == &original.Images[0] {
t.Error("Images should be different instances")
}
// Modify original to verify independence
if len(original.Images) > 0 {
originalImage := original.Images[0]
original.Images[0] = []byte("modified")
if len(copied.Images) > 0 && string(copied.Images[0]) == "modified" {
t.Error("Images should be independent after copy")
}
// Restore for other tests
original.Images[0] = originalImage
}
// Test 5: Verify Options map is deeply copied
if len(copied.Options) != len(original.Options) {
t.Errorf("Options length mismatch: got %d, want %d", len(copied.Options), len(original.Options))
}
if len(copied.Options) > 0 && &copied.Options == &original.Options {
t.Error("Options map should be different instances")
}
// Modify original to verify independence
if len(original.Options) > 0 {
originalTemp := original.Options["temperature"]
original.Options["temperature"] = 0.9
if copied.Options["temperature"] == 0.9 {
t.Error("Options should be independent after copy")
}
// Restore for other tests
original.Options["temperature"] = originalTemp
}
// Test 6: Verify KeepAlive pointer is copied (shallow copy)
if copied.KeepAlive != original.KeepAlive {
t.Error("KeepAlive pointer should be the same (shallow copy)")
}
// Test 7: Verify Think pointer creates a new instance
if original.Think != nil && copied.Think == original.Think {
t.Error("Think should be a different instance")
}
if original.Think != nil && copied.Think != nil {
if !reflect.DeepEqual(copied.Think.Value, original.Think.Value) {
t.Errorf("Think.Value mismatch: got %v, want %v", copied.Think.Value, original.Think.Value)
}
}
// Test 8: Test with zero values
zeroOriginal := runOptions{}
zeroCopy := zeroOriginal.Copy()
if !reflect.DeepEqual(zeroCopy, zeroOriginal) {
fmt.Printf("orig: %#v\ncopy: %#v\n", zeroOriginal, zeroCopy)
t.Error("Copy of zero value should equal original zero value")
}
}
func TestRunOptions_Copy_EmptySlicesAndMaps(t *testing.T) {
// Test with empty slices and maps
original := runOptions{
Messages: []api.Message{},
Images: []api.ImageData{},
Options: map[string]any{},
}
copied := original.Copy()
if copied.Messages == nil {
t.Error("Empty Messages slice should remain empty, not nil")
}
if copied.Images == nil {
t.Error("Empty Images slice should remain empty, not nil")
}
if copied.Options == nil {
t.Error("Empty Options map should remain empty, not nil")
}
if len(copied.Messages) != 0 {
t.Error("Empty Messages slice should remain empty")
}
if len(copied.Images) != 0 {
t.Error("Empty Images slice should remain empty")
}
if len(copied.Options) != 0 {
t.Error("Empty Options map should remain empty")
}
}
func TestRunOptions_Copy_NilPointers(t *testing.T) {
// Test with nil pointers
original := runOptions{
KeepAlive: nil,
Think: nil,
}
copied := original.Copy()
if copied.KeepAlive != nil {
t.Error("Nil KeepAlive should remain nil")
}
if copied.Think != nil {
t.Error("Nil Think should remain nil")
}
}
func TestRunOptions_Copy_ThinkValueVariants(t *testing.T) {
tests := []struct {
name string
think *api.ThinkValue
}{
{"nil Think", nil},
{"bool true", &api.ThinkValue{Value: true}},
{"bool false", &api.ThinkValue{Value: false}},
{"string value", &api.ThinkValue{Value: "reasoning text"}},
{"int value", &api.ThinkValue{Value: 42}},
{"nil value", &api.ThinkValue{Value: nil}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
original := runOptions{Think: tt.think}
copied := original.Copy()
if tt.think == nil {
if copied.Think != nil {
t.Error("Nil Think should remain nil")
}
return
}
if copied.Think == nil {
t.Error("Non-nil Think should not become nil")
return
}
if copied.Think == original.Think {
t.Error("Think should be a different instance")
}
if !reflect.DeepEqual(copied.Think.Value, original.Think.Value) {
t.Errorf("Think.Value mismatch: got %v, want %v", copied.Think.Value, original.Think.Value)
}
})
}
}
func TestRunOptions_Copy_Independence(t *testing.T) {
// Test that modifications to original don't affect copy
originalThink := &api.ThinkValue{Value: "original"}
original := runOptions{
Model: "original-model",
Messages: []api.Message{{Role: "user", Content: "original"}},
Options: map[string]any{"key": "value"},
Think: originalThink,
}
copied := original.Copy()
// Modify original
original.Model = "modified-model"
if len(original.Messages) > 0 {
original.Messages[0].Content = "modified"
}
original.Options["key"] = "modified"
if original.Think != nil {
original.Think.Value = "modified"
}
// Verify copy is unchanged
if copied.Model == "modified-model" {
t.Error("Copy Model should not be affected by original modification")
}
if len(copied.Messages) > 0 && copied.Messages[0].Content == "modified" {
t.Error("Copy Messages should not be affected by original modification")
}
if copied.Options["key"] == "modified" {
t.Error("Copy Options should not be affected by original modification")
}
if copied.Think != nil && copied.Think.Value == "modified" {
t.Error("Copy Think should not be affected by original modification")
}
}

View File

@ -195,16 +195,24 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Println("Usage:\n /load <modelname>")
continue
}
origOpts := opts.Copy()
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
if err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("Couldn't find model '%s'\n", opts.Model)
opts = origOpts.Copy()
continue
}
return err
}
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err)
fmt.Printf("Couldn't find model '%s'\n", opts.Model)
opts = origOpts.Copy()
continue
}
if strings.Contains(err.Error(), "does not support thinking") {

View File

@ -1,83 +0,0 @@
//go:build linux || windows
package discover
import (
"errors"
"log/slog"
"os"
"path/filepath"
"runtime"
"strings"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
func rocmLibUsable(libDir string) bool {
slog.Debug("evaluating potential rocm lib dir " + libDir)
for _, g := range ROCmLibGlobs {
res, _ := filepath.Glob(filepath.Join(libDir, g))
if len(res) == 0 {
return false
}
}
return true
}
func GetSupportedGFX(libDir string) ([]string, error) {
var ret []string
files, err := filepath.Glob(filepath.Join(libDir, "rocblas", "library", "TensileLibrary_lazy_gfx*.dat"))
if err != nil {
return nil, err
}
for _, file := range files {
ret = append(ret, strings.TrimSuffix(strings.TrimPrefix(filepath.Base(file), "TensileLibrary_lazy_"), ".dat"))
}
return ret, nil
}
func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
if hipPath != "" {
hipLibDir := filepath.Join(hipPath, "bin")
if rocmLibUsable(hipLibDir) {
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
return hipLibDir, nil
}
}
// Scan the LD_LIBRARY_PATH or PATH
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
paths := os.Getenv(pathEnv)
for _, path := range filepath.SplitList(paths) {
d, err := filepath.Abs(path)
if err != nil {
continue
}
if rocmLibUsable(d) {
return d, nil
}
}
// Well known location(s)
for _, path := range RocmStandardLocations {
if rocmLibUsable(path) {
return path, nil
}
}
return "", errors.New("no suitable rocm found, falling back to CPU")
}

View File

@ -1,147 +0,0 @@
package discover
import (
"errors"
"fmt"
"log/slog"
"syscall"
"unsafe"
"golang.org/x/sys/windows"
)
const (
hipSuccess = 0
hipErrorNoDevice = 100
)
type hipDevicePropMinimal struct {
Name [256]byte
unused1 [140]byte
GcnArchName [256]byte // gfx####
iGPU int // Doesn't seem to actually report correctly
unused2 [128]byte
}
// Wrap the amdhip64.dll library for GPU discovery
type HipLib struct {
dll windows.Handle
hipGetDeviceCount uintptr
hipGetDeviceProperties uintptr
hipMemGetInfo uintptr
hipSetDevice uintptr
hipDriverGetVersion uintptr
}
func NewHipLib() (*HipLib, error) {
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
h, err := windows.LoadLibrary("amdhip64_6.dll")
if err != nil {
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
}
hl := &HipLib{}
hl.dll = h
hl.hipGetDeviceCount, err = windows.GetProcAddress(hl.dll, "hipGetDeviceCount")
if err != nil {
return nil, err
}
hl.hipGetDeviceProperties, err = windows.GetProcAddress(hl.dll, "hipGetDeviceProperties")
if err != nil {
return nil, err
}
hl.hipMemGetInfo, err = windows.GetProcAddress(hl.dll, "hipMemGetInfo")
if err != nil {
return nil, err
}
hl.hipSetDevice, err = windows.GetProcAddress(hl.dll, "hipSetDevice")
if err != nil {
return nil, err
}
hl.hipDriverGetVersion, err = windows.GetProcAddress(hl.dll, "hipDriverGetVersion")
if err != nil {
return nil, err
}
return hl, nil
}
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
// so we have to unload/reset the library after we do our initial discovery
// to make sure our updates to that variable are processed by llama.cpp
func (hl *HipLib) Release() {
err := windows.FreeLibrary(hl.dll)
if err != nil {
slog.Warn("failed to unload amdhip64.dll", "error", err)
}
hl.dll = 0
}
func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
if hl.dll == 0 {
return 0, 0, errors.New("dll has been unloaded")
}
var version int
status, _, err := syscall.SyscallN(hl.hipDriverGetVersion, uintptr(unsafe.Pointer(&version)))
if status != hipSuccess {
return 0, 0, fmt.Errorf("failed call to hipDriverGetVersion: %d %s", status, err)
}
slog.Debug("hipDriverGetVersion", "version", version)
driverMajor = version / 10000000
driverMinor = (version - (driverMajor * 10000000)) / 100000
return driverMajor, driverMinor, nil
}
func (hl *HipLib) HipGetDeviceCount() int {
if hl.dll == 0 {
slog.Error("dll has been unloaded")
return 0
}
var count int
status, _, err := syscall.SyscallN(hl.hipGetDeviceCount, uintptr(unsafe.Pointer(&count)))
if status == hipErrorNoDevice {
slog.Info("AMD ROCm reports no devices found")
return 0
}
if status != hipSuccess {
slog.Warn("failed call to hipGetDeviceCount", "status", status, "error", err)
}
return count
}
func (hl *HipLib) HipSetDevice(device int) error {
if hl.dll == 0 {
return errors.New("dll has been unloaded")
}
status, _, err := syscall.SyscallN(hl.hipSetDevice, uintptr(device))
if status != hipSuccess {
return fmt.Errorf("failed call to hipSetDevice: %d %s", status, err)
}
return nil
}
func (hl *HipLib) HipGetDeviceProperties(device int) (*hipDevicePropMinimal, error) {
if hl.dll == 0 {
return nil, errors.New("dll has been unloaded")
}
var props hipDevicePropMinimal
status, _, err := syscall.SyscallN(hl.hipGetDeviceProperties, uintptr(unsafe.Pointer(&props)), uintptr(device))
if status != hipSuccess {
return nil, fmt.Errorf("failed call to hipGetDeviceProperties: %d %s", status, err)
}
return &props, nil
}
// free, total, err
func (hl *HipLib) HipMemGetInfo() (uint64, uint64, error) {
if hl.dll == 0 {
return 0, 0, errors.New("dll has been unloaded")
}
var totalMemory uint64
var freeMemory uint64
status, _, err := syscall.SyscallN(hl.hipMemGetInfo, uintptr(unsafe.Pointer(&freeMemory)), uintptr(unsafe.Pointer(&totalMemory)))
if status != hipSuccess {
return 0, 0, fmt.Errorf("failed call to hipMemGetInfo: %d %s", status, err)
}
return freeMemory, totalMemory, nil
}

View File

@ -1,549 +0,0 @@
package discover
import (
"bufio"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"regexp"
"slices"
"sort"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
// Discovery logic for AMD/ROCm GPUs
const (
DriverVersionFile = "/sys/module/amdgpu/version"
AMDNodesSysfsDir = "/sys/class/kfd/kfd/topology/nodes/"
GPUPropertiesFileGlob = AMDNodesSysfsDir + "*/properties"
// Prefix with the node dir
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
// Direct Rendering Manager sysfs location
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
DRMTotalMemoryFile = "mem_info_vram_total"
DRMUsedMemoryFile = "mem_info_vram_used"
// In hex; properties file is in decimal
DRMUniqueIDFile = "unique_id"
DRMVendorFile = "vendor"
DRMDeviceFile = "device"
)
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"libhipblas.so.2*", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"/opt/rocm/lib", "/usr/lib64"}
)
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
if !AMDDetected() {
return resp, fmt.Errorf("AMD GPUs not detected")
}
// Opportunistic logging of driver version to aid in troubleshooting
driverMajor, driverMinor, err := AMDDriverVersion()
if err != nil {
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
slog.Warn("ollama recommends running the https://www.amd.com/en/support/download/linux-drivers.html", "error", err)
}
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := envconfig.HipVisibleDevices() // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
switch {
case rocrVD != "":
visibleDevices = strings.Split(rocrVD, ",")
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case gpuDO != "":
visibleDevices = strings.Split(gpuDO, ",")
}
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
var libDir string
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
sort.Slice(matches, func(i, j int) bool {
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
return a < b
})
gpuCount := 0
gpuOrdinalID := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
if err != nil {
slog.Debug("failed to open sysfs node", "file", match, "error", err)
continue
}
defer fp.Close()
scanner := bufio.NewScanner(fp)
isCPU := false
var major, minor, patch uint64
var vendor, device, uniqueID uint64
for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
if strings.HasPrefix(line, "gfx_target_version") {
ver := strings.Fields(line)
// Detect CPUs
if len(ver) == 2 && ver[1] == "0" {
slog.Debug("detected CPU " + match)
isCPU = true
break
}
if len(ver) != 2 || len(ver[1]) < 5 {
slog.Warn("malformed "+match, "gfx_target_version", line)
// If this winds up being a CPU, our offsets may be wrong
continue
}
l := len(ver[1])
var err1, err2, err3 error
patch, err1 = strconv.ParseUint(ver[1][l-2:l], 10, 32)
minor, err2 = strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
major, err3 = strconv.ParseUint(ver[1][:l-4], 10, 32)
if err1 != nil || err2 != nil || err3 != nil {
slog.Debug("malformed int " + line)
continue
}
} else if strings.HasPrefix(line, "vendor_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "vendor_id", line)
continue
}
vendor, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "vendor_id", line, "error", err)
}
} else if strings.HasPrefix(line, "device_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "device_id", line)
continue
}
device, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "device_id", line, "error", err)
}
} else if strings.HasPrefix(line, "unique_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "unique_id", line)
continue
}
uniqueID, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "unique_id", line, "error", err)
}
}
// TODO - any other properties we want to extract and record?
// vendor_id + device_id -> pci lookup for "Name"
// Other metrics that may help us understand relative performance between multiple GPUs
}
// Note: while ./mem_banks/*/used_memory exists, it doesn't appear to take other VRAM consumers
// into consideration, so we instead map the device over to the DRM driver sysfs nodes which
// do reliably report VRAM usage.
if isCPU {
continue
}
// Skip over any GPUs that are masked
if major == 0 && minor == 0 && patch == 0 {
slog.Debug("skipping gpu with gfx000")
continue
}
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
var usedFile string
mapping := []struct {
id uint64
filename string
}{
{vendor, DRMVendorFile},
{device, DRMDeviceFile},
{uniqueID, DRMUniqueIDFile}, // Not all devices will report this
}
slog.Debug("mapping amdgpu to drm sysfs nodes", "amdgpu", match, "vendor", vendor, "device", device, "unique_id", uniqueID)
// Map over to DRM location to find the total/free memory
drmMatches, _ := filepath.Glob(DRMDeviceDirGlob)
for _, devDir := range drmMatches {
matched := true
for _, m := range mapping {
if m.id == 0 {
// Null ID means it didn't populate, so we can't use it to match
continue
}
filename := filepath.Join(devDir, m.filename)
buf, err := os.ReadFile(filename)
if err != nil {
slog.Debug("failed to read sysfs node", "file", filename, "error", err)
matched = false
break
}
// values here are in hex, strip off the lead 0x and parse so we can compare the numeric (decimal) values in amdgpu
cmp, err := strconv.ParseUint(strings.TrimPrefix(strings.TrimSpace(string(buf)), "0x"), 16, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", filename, "error", err)
matched = false
break
}
if cmp != m.id {
matched = false
break
}
}
if !matched {
continue
}
// Found the matching DRM directory
slog.Debug("matched", "amdgpu", match, "drm", devDir)
totalFile := filepath.Join(devDir, DRMTotalMemoryFile)
buf, err := os.ReadFile(totalFile)
if err != nil {
slog.Debug("failed to read sysfs node", "file", totalFile, "error", err)
break
}
totalMemory, err = strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", totalFile, "error", err)
break
}
usedFile = filepath.Join(devDir, DRMUsedMemoryFile)
usedMemory, err = getFreeMemory(usedFile)
if err != nil {
slog.Debug("failed to update used memory", "error", err)
}
break
}
var name string
// TODO - PCI ID lookup
if vendor > 0 && device > 0 {
name = fmt.Sprintf("%04x:%04x", vendor, device)
}
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
var ID string
if uniqueID != 0 {
ID = fmt.Sprintf("GPU-%016x", uniqueID)
} else {
ID = strconv.Itoa(gpuOrdinalID)
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
filterID: gpuOrdinalID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuCount,
}
// Keep track of numeric IDs based on valid GPUs
gpuCount += 1
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if (uniqueID != 0 && visible == gpuInfo.ID) || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "index", gpuInfo.index, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
// Ordinal IDs are based on the visible GPUs
gpuOrdinalID += 1
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
minVer, err := strconv.Atoi(RocmComputeMajorMin)
if err != nil {
slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
}
if int(major) < minVer {
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
slog.Warn(reason, "gpu", gpuInfo.ID)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "available", format.HumanBytes2(totalMemory-usedMemory))
// Final validation is gfx compatibility - load the library if we haven't already loaded it
// even if the user overrides, we still need to validate the library
if libDir == "" {
libDir, err = AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
}
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once
if len(supported) == 0 {
supported, err = GetSupportedGFX(libDir)
if err != nil {
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
slog.Debug("rocm supported GPUs", "types", supported)
}
gfx := gpuInfo.Compute
if !slices.Contains[[]string, string](supported, gfx) {
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
continue
} else {
slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx)
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
}
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, "HSA_ENABLE_SDMA=0")
}
// The GPU has passed all the verification steps and is supported
resp = append(resp, gpuInfo)
}
if len(resp) == 0 {
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
if err := verifyKFDDriverAccess(); err != nil {
err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err)
slog.Error(err.Error())
return nil, err
}
return resp, nil
}
// Quick check for AMD driver so we can skip amdgpu discovery if not present
func AMDDetected() bool {
// Some driver versions (older?) don't have a version file, so just lookup the parent dir
sysfsDir := filepath.Dir(DriverVersionFile)
_, err := os.Stat(sysfsDir)
if errors.Is(err, os.ErrNotExist) {
slog.Debug("amdgpu driver not detected " + sysfsDir)
return false
} else if err != nil {
slog.Debug("error looking up amd driver", "path", sysfsDir, "error", err)
return false
}
return true
}
// Prefer to use host installed ROCm, as long as it meets our minimum requirements
// failing that, tell the user how to download it on their own
func AMDValidateLibDir() (string, error) {
libDir, err := commonAMDValidateLibDir()
if err == nil {
return libDir, nil
}
// Well known ollama installer path
installedRocmDir := "/usr/share/ollama/lib/rocm"
if rocmLibUsable(installedRocmDir) {
return installedRocmDir, nil
}
// If we still haven't found a usable rocm, the user will have to install it on their own
slog.Warn("amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func AMDDriverVersion() (driverMajor, driverMinor int, err error) {
_, err = os.Stat(DriverVersionFile)
if err != nil {
return 0, 0, fmt.Errorf("amdgpu version file missing: %s %w", DriverVersionFile, err)
}
fp, err := os.Open(DriverVersionFile)
if err != nil {
return 0, 0, err
}
defer fp.Close()
verString, err := io.ReadAll(fp)
if err != nil {
return 0, 0, err
}
pattern := `\A(\d+)\.(\d+).*`
regex := regexp.MustCompile(pattern)
match := regex.FindStringSubmatch(string(verString))
if len(match) < 2 {
return 0, 0, fmt.Errorf("malformed version string %s", string(verString))
}
driverMajor, err = strconv.Atoi(match[1])
if err != nil {
return 0, 0, err
}
driverMinor, err = strconv.Atoi(match[2])
if err != nil {
return 0, 0, err
}
return driverMajor, driverMinor, nil
}
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
for i := range gpus {
usedMemory, err := getFreeMemory(gpus[i].usedFilepath)
if err != nil {
return err
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(gpus[i].TotalMemory-usedMemory))
gpus[i].FreeMemory = gpus[i].TotalMemory - usedMemory
}
return nil
}
func getFreeMemory(usedFile string) (uint64, error) {
buf, err := os.ReadFile(usedFile)
if err != nil {
return 0, fmt.Errorf("failed to read sysfs node %s %w", usedFile, err)
}
usedMemory, err := strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", usedFile, "error", err)
return 0, fmt.Errorf("failed to parse sysfs node %s %w", usedFile, err)
}
return usedMemory, nil
}
func verifyKFDDriverAccess() error {
// Verify we have permissions - either running as root, or we have group access to the driver
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0o666)
if err != nil {
if errors.Is(err, fs.ErrPermission) {
return fmt.Errorf("permissions not set up properly. Either run ollama as root, or add you user account to the render group. %w", err)
} else if errors.Is(err, fs.ErrNotExist) {
// Container runtime failure?
return fmt.Errorf("kfd driver not loaded. If running in a container, remember to include '--device /dev/kfd --device /dev/dri'")
}
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
}
fd.Close()
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@ -1,226 +0,0 @@
package discover
import (
"bytes"
"errors"
"fmt"
"log/slog"
"path/filepath"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
const (
// TODO We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true
iGPUName = "AMD Radeon(TM) Graphics"
)
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
)
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return nil, err
}
defer hl.Release()
driverMajor, driverMinor, err := hl.AMDDriverVersion()
if err != nil {
// For now this is benign, but we may eventually need to fail compatibility checks
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
if count == 0 {
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
libDir, err := AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir)
if err != nil {
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
return nil, err
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
}
slog.Debug("detected hip devices", "count", count)
// TODO how to determine the underlying device ID when visible devices is causing this to subset?
for i := range count {
err = hl.HipSetDevice(i)
if err != nil {
slog.Warn("set device", "id", i, "error", err)
continue
}
props, err := hl.HipGetDeviceProperties(i)
if err != nil {
slog.Warn("get properties", "id", i, "error", err)
continue
}
n := bytes.IndexByte(props.Name[:], 0)
name := string(props.Name[:n])
// TODO is UUID actually populated on windows?
// Can luid be used on windows for setting visible devices (and is it actually set?)
n = bytes.IndexByte(props.GcnArchName[:], 0)
gfx := string(props.GcnArchName[:n])
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!?
freeMemory, totalMemory, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn("get mem info", "id", i, "error", err)
continue
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: freeMemory,
},
// Free memory reporting on Windows is not reliable until we bump to ROCm v6.2
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
filterID: i,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
index: i,
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// HSA_OVERRIDE_GFX_VERSION not supported on windows
continue
} else {
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
}
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
resp = append(resp, gpuInfo)
}
return resp, nil
}
func AMDValidateLibDir() (string, error) {
libDir, err := commonAMDValidateLibDir()
if err == nil {
return libDir, nil
}
// Installer payload (if we're running from some other location)
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil
}
// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return err
}
defer hl.Release()
for i := range gpus {
err := hl.HipSetDevice(gpus[i].index)
if err != nil {
return err
}
freeMemory, _, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn("get mem info", "id", i, "error", err)
continue
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(freeMemory))
gpus[i].FreeMemory = freeMemory
}
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@ -1,24 +0,0 @@
package discover
import (
"os"
"path/filepath"
"runtime"
"strings"
)
func IsNUMA() bool {
if runtime.GOOS != "linux" {
// numa support in llama.cpp is linux only
return false
}
ids := map[string]any{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)
if err == nil {
ids[strings.TrimSpace(string(id))] = struct{}{}
}
}
return len(ids) > 1
}

View File

@ -4,7 +4,9 @@ import (
"bufio"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"reflect"
"regexp"
"sort"
@ -13,47 +15,6 @@ import (
"github.com/ollama/ollama/format"
)
var CudartGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var NvmlGlobs = []string{}
var NvcudaGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var OneapiGlobs = []string{
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
"/usr/lib*/libze_intel_gpu.so*",
}
var (
CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so*"
)
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
@ -106,16 +67,17 @@ type linuxCpuInfo struct {
CoreID string `cpuinfo:"core id"`
}
func GetCPUDetails() ([]CPU, error) {
func GetCPUDetails() []CPU {
file, err := os.Open(CpuInfoFilename)
if err != nil {
return nil, err
slog.Warn("failed to get CPU details", "error", err)
return nil
}
defer file.Close()
return linuxCPUDetails(file)
}
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
func linuxCPUDetails(file io.Reader) []CPU {
reColumns := regexp.MustCompile("\t+: ")
scanner := bufio.NewScanner(file)
cpuInfos := []linuxCpuInfo{}
@ -194,5 +156,17 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
for _, k := range keys {
result = append(result, *socketByID[k])
}
return result, nil
return result
}
func IsNUMA() bool {
ids := map[string]any{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)
if err == nil {
ids[strings.TrimSpace(string(id))] = struct{}{}
}
}
return len(ids) > 1
}

View File

@ -2062,10 +2062,7 @@ power management:
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
buf := bytes.NewBufferString(v.input)
cpus, err := linuxCPUDetails(buf)
if err != nil {
t.Fatal(err)
}
cpus := linuxCPUDetails(buf)
slog.Info("example", "scenario", k, "cpus", cpus)
si := SystemInfo{

View File

@ -26,29 +26,6 @@ var (
GetLogicalProcessorInformationEx = k32.NewProc("GetLogicalProcessorInformationEx")
)
var CudartGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvmlGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var NvcudaGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
var OneapiGlobs = []string{
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}
var (
CudartMgmtName = "cudart64_*.dll"
NvcudaMgmtName = "nvcuda.dll"
NvmlMgmtName = "nvml.dll"
OneapiMgmtName = "ze_intel_gpu64.dll"
)
func GetCPUMem() (memInfo, error) {
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
@ -122,27 +99,22 @@ func (pkg *winPackage) IsMember(target *GROUP_AFFINITY) bool {
}
func getLogicalProcessorInformationEx() ([]byte, error) {
buf := make([]byte, 1)
buf := make([]byte, 1024)
bufSize := len(buf)
ret, _, err := GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret != 0 {
return nil, fmt.Errorf("failed to determine size info ret:%d %w", ret, err)
var err error
for range 3 {
var ret uintptr
ret, _, err = GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret == 1 && bufSize <= len(buf) {
return buf, nil
}
buf = make([]byte, bufSize)
}
buf = make([]byte, bufSize)
ret, _, err = GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret == 0 {
return nil, fmt.Errorf("failed to gather processor information ret:%d buflen:%d %w", ret, bufSize, err)
}
return buf, nil
return nil, fmt.Errorf("unable to determine CPU details: %w", err)
}
func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
@ -217,10 +189,11 @@ func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
return packages
}
func GetCPUDetails() ([]CPU, error) {
func GetCPUDetails() []CPU {
buf, err := getLogicalProcessorInformationEx()
if err != nil {
return nil, err
slog.Warn("failed to get CPU details", "error", err)
return nil
}
packages := processSystemLogicalProcessorInforationList(buf)
cpus := make([]CPU, len(packages))
@ -230,5 +203,10 @@ func GetCPUDetails() ([]CPU, error) {
cpus[i].EfficiencyCoreCount = pkg.efficiencyCoreCount
cpus[i].ThreadCount = pkg.threadCount
}
return cpus, nil
return cpus
}
func IsNUMA() bool {
// numa support in ggml is linux only
return false
}

View File

@ -1,64 +0,0 @@
//go:build linux || windows
package discover
import (
"fmt"
"log/slog"
"os"
"regexp"
"runtime"
"strconv"
"strings"
)
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaVariant(gpuInfos []CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
}
}
}
}
}
// Check GPU compute capability FIRST, lowest common denominator if multi-gpu
for _, gpuInfo := range gpuInfos {
if gpuInfo.computeMajor < 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor < 5) {
// GPU is Pascal or older (CC <= 7.4) - use CUDA v12 (supports CC 6.1)
return "v12"
}
}
// GPU is Turing or newer (CC >= 7.5) - can use newer CUDA
if len(gpuInfos) > 0 && gpuInfos[0].DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfos[0].DriverMajor, gpuInfos[0].DriverMinor))
return "v12"
}
return "v13"
}

View File

@ -1,730 +1,148 @@
//go:build linux || windows
package discover
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread
#include "gpu_info.h"
*/
import "C"
import (
"context"
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type cudaHandles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func GetCPUInfo() GpuInfo {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
return GpuInfo{
memInfo: mem,
DeviceID: ml.DeviceID{
Library: "cpu",
ID: "0",
},
}
}
type oneapiHandles struct {
oneapi *C.oneapi_handle_t
deviceCount int
func GetGPUInfo(ctx context.Context, runners []FilteredRunnerDiscovery) GpuInfoList {
devs := GPUDevices(ctx, runners)
return devInfoToInfoList(devs)
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
// TODO OneAPI minimum memory
)
var (
gpuMutex sync.Mutex
bootstrapped bool
cpus []CPUInfo
cudaGPUs []CudaGPUInfo
nvcudaLibPath string
cudartLibPath string
oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
// If any discovered GPUs are incompatible, report why
unsupportedGPUs []UnsupportedGPUInfo
// Keep track of errors during bootstrapping so that if GPUs are missing
// they expected to be present this may explain why
bootstrapErrors []error
)
// With our current CUDA compile flags, older than 5.0 will not work properly
// (string values used to allow ldflags overrides at build time)
var (
CudaComputeMajorMin = "5"
CudaComputeMinorMin = "0"
)
var RocmComputeMajorMin = "9"
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if nvmlLibPath != "" {
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
return cHandles
}
if cudartLibPath != "" {
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
return cHandles
}
slog.Debug("searching for GPU discovery libraries for NVIDIA")
var cudartMgmtPatterns []string
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
}
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
cHandles.nvcuda = nvcuda
cHandles.deviceCount = deviceCount
nvcudaLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
cHandles.cudart = cudart
cHandles.deviceCount = deviceCount
cudartLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return cHandles
}
// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
return oHandles
}
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
var err error
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return oHandles
}
func GetCPUInfo() GpuInfoList {
gpuMutex.Lock()
if !bootstrapped {
gpuMutex.Unlock()
GetGPUInfo()
} else {
gpuMutex.Unlock()
}
return GpuInfoList{cpus[0].GpuInfo}
}
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
needRefresh := true
var cHandles *cudaHandles
var oHandles *oneapiHandles
defer func() {
if cHandles != nil {
if cHandles.cudart != nil {
C.cudart_release(*cHandles.cudart)
}
if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda)
}
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
}
if oHandles != nil {
if oHandles.oneapi != nil {
// TODO - is this needed?
C.oneapi_release(*oHandles.oneapi)
}
}
}()
if !bootstrapped {
slog.Info("looking for compatible GPUs")
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
if err != nil {
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
}
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
if err != nil {
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
}
bootstrapErrors = []error{}
needRefresh = false
var memInfo C.mem_info_t
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
}
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
ID: "0",
},
CPUs: details,
},
}
// Load ALL libraries
cHandles = initCudaHandles()
// NVIDIA
for i := range cHandles.deviceCount {
if cHandles.cudart != nil || cHandles.nvcuda != nil {
gpuInfo := CudaGPUInfo{
GpuInfo: GpuInfo{
Library: "cuda",
},
index: i,
}
var driverMajor int
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
driverMajor = int(cHandles.cudart.driver_major)
driverMinor = int(cHandles.cudart.driver_minor)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
driverMinor = int(cHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
})
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
uuid := C.CString(gpuInfo.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
// Second pass on NVIDIA GPUs to set lowest common denominator variant and DependencyPaths
variant := cudaVariant(cudaGPUs)
var variantPath string
// Start with our bundled libraries
if variant != "" {
variantPath = filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err != nil {
variantPath = ""
}
}
for i := range cudaGPUs {
cudaGPUs[i].Variant = variant
if variantPath != "" {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
cudaGPUs[i].DependencyPath = append([]string{variantPath}, cudaGPUs[i].DependencyPath...)
}
}
}
// Intel
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil {
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
continue
}
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
for i := range devCount {
gpuInfo := OneapiGPUInfo{
GpuInfo: GpuInfo{
Library: "oneapi",
},
driverIndex: int(d),
gpuIndex: int(i),
}
// TODO - split bootstrapping from updating free memory
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = []string{LibOllamaPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
}
rocmGPUs, err = AMDGetGPUInfo()
// The ID field is used in context of the filtered set of GPUS
// so we have to replace any of these numeric IDs with their
// placement in this set of GPUs
for i := range rocmGPUs {
if _, err := strconv.Atoi(rocmGPUs[i].ID); err == nil {
rocmGPUs[i].ID = strconv.Itoa(i)
}
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
}
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
}
// For detected GPUs, load library if not loaded
// Refresh free memory usage
if needRefresh {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
} else {
slog.Debug("updating system memory data",
slog.Group(
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
if cHandles == nil && len(cudaGPUs) > 0 {
cHandles = initCudaHandles()
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
uuid := C.CString(gpu.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
} else {
// shouldn't happen
slog.Warn("no valid cuda library loaded to refresh vram usage")
break
}
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.free == 0 {
slog.Warn("error looking up nvidia GPU memory")
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
}
if oHandles == nil && len(oneapiGPUs) > 0 {
oHandles = initOneAPIHandles()
}
for i, gpu := range oneapiGPUs {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
continue
}
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
}
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
if err != nil {
slog.Debug("problem refreshing ROCm free memory", "error", err)
}
}
func devInfoToInfoList(devs []ml.DeviceInfo) GpuInfoList {
resp := []GpuInfo{}
for _, gpu := range cudaGPUs {
resp = append(resp, gpu.GpuInfo)
// Our current packaging model places ggml-hip in the main directory
// but keeps rocm in an isolated directory. We have to add it to
// the [LD_LIBRARY_]PATH so ggml-hip will load properly
rocmDir := filepath.Join(LibOllamaPath, "rocm")
if _, err := os.Stat(rocmDir); err != nil {
rocmDir = ""
}
for _, gpu := range rocmGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range oneapiGPUs {
resp = append(resp, gpu.GpuInfo)
for _, dev := range devs {
info := GpuInfo{
DeviceID: dev.DeviceID,
filterID: dev.FilteredID,
Name: dev.Description,
memInfo: memInfo{
TotalMemory: dev.TotalMemory,
FreeMemory: dev.FreeMemory,
},
// TODO can we avoid variant
DependencyPath: dev.LibraryPath,
DriverMajor: dev.DriverMajor,
DriverMinor: dev.DriverMinor,
}
if dev.Library == "CUDA" || dev.Library == "ROCm" {
info.MinimumMemory = 457 * format.MebiByte
}
if dev.Library == "ROCm" {
info.Compute = fmt.Sprintf("gfx%x%02x", dev.ComputeMajor, dev.ComputeMinor)
if rocmDir != "" {
info.DependencyPath = append(info.DependencyPath, rocmDir)
}
} else {
info.Compute = fmt.Sprintf("%d.%d", dev.ComputeMajor, dev.ComputeMinor)
}
resp = append(resp, info)
}
if len(resp) == 0 {
resp = append(resp, cpus[0].GpuInfo)
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
resp = append(resp, GpuInfo{
memInfo: mem,
DeviceID: ml.DeviceID{
Library: "cpu",
ID: "0",
},
})
}
return resp
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
}
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(p, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
continue
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
// Resolve any links so we don't try the same lib multiple times
// and weed out any dups across globs
libPath := match
tmp := match
var err error
for ; err == nil; tmp, err = os.Readlink(libPath) {
if !filepath.IsAbs(tmp) {
tmp = filepath.Join(filepath.Dir(libPath), tmp)
}
libPath = tmp
}
new := true
for _, cmp := range gpuLibPaths {
if cmp == libPath {
new = false
break
}
}
if new {
gpuLibPaths = append(gpuLibPaths, libPath)
}
}
}
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
// Bootstrap the runtime library
// Returns: num devices, handle, libPath, error
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the driver library
// Returns: num devices, handle, libPath, error
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
slog.Warn(err.Error())
case C.CUDA_ERROR_NO_DEVICE:
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
slog.Info(err.Error())
case C.CUDA_ERROR_UNKNOWN:
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
slog.Warn(err.Error())
default:
msg := C.GoString(resp.err)
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
}
}
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the management library
// Returns: handle, libPath, error
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return &resp.ch, libPath, err
}
}
return nil, "", err
}
// bootstrap the Intel GPU library
// Returns: num devices, handle, libPath, error
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
var resp C.oneapi_init_resp_t
num_devices := 0
resp.oh.verbose = getVerboseState()
var err error
for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.oneapi_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
for i := range resp.oh.num_drivers {
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath, err
}
}
return 0, nil, "", err
}
func getVerboseState() C.uint16_t {
if envconfig.LogLevel() < slog.LevelInfo {
return C.uint16_t(1)
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
if len(l) == 0 {
return nil
}
vd := []string{}
// Only filter the AMD GPUs at this level, let all NVIDIA devices through
if tmp := rocmGetVisibleDevicesEnv(l); tmp != "" {
vd = append(vd, tmp)
}
return vd
return []string{rocmGetVisibleDevicesEnv(l)}
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()
defer gpuMutex.Unlock()
discoveryErrors := []string{}
for _, err := range bootstrapErrors {
discoveryErrors = append(discoveryErrors, err.Error())
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "ROCm" {
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if info.filterID != "" {
ids = append(ids, info.filterID)
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
envVar := "ROCR_VISIBLE_DEVICES="
if runtime.GOOS != "linux" {
envVar = "HIP_VISIBLE_DEVICES="
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return envVar + strings.Join(ids, ",")
}
// GetSystemInfo returns the last cached state of the GPUs on the system
func GetSystemInfo() SystemInfo {
deviceMu.Lock()
defer deviceMu.Unlock()
gpus := devInfoToInfoList(devices)
if len(gpus) == 1 && gpus[0].Library == "cpu" {
gpus = []GpuInfo{}
}
return SystemInfo{
System: cpus[0],
GPUs: gpus,
UnsupportedGPUs: unsupportedGPUs,
DiscoveryErrors: discoveryErrors,
System: CPUInfo{
CPUs: GetCPUDetails(),
GpuInfo: GetCPUInfo(),
},
GPUs: gpus,
}
}

View File

@ -1,5 +1,3 @@
//go:build darwin
package discover
/*
@ -11,7 +9,6 @@ import "C"
import (
"log/slog"
"runtime"
"syscall"
"github.com/ollama/ollama/format"
@ -21,39 +18,6 @@ const (
metalMinimumMemory = 512 * format.MebiByte
)
func GetGPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
if runtime.GOARCH == "amd64" {
return []GpuInfo{
{
Library: "cpu",
memInfo: mem,
},
}
}
info := GpuInfo{
Library: "metal",
ID: "0",
}
info.TotalMemory = uint64(C.getRecommendedMaxVRAM())
// TODO is there a way to gather actual allocated video memory? (currentAllocatedSize doesn't work)
info.FreeMemory = info.TotalMemory
info.MinimumMemory = metalMinimumMemory
return []GpuInfo{info}
}
func GetCPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
return []GpuInfo{
{
Library: "cpu",
memInfo: mem,
},
}
}
func GetCPUMem() (memInfo, error) {
return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()),
@ -62,13 +26,7 @@ func GetCPUMem() (memInfo, error) {
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
// No-op on darwin
return nil
}
func GetSystemInfo() SystemInfo {
mem, _ := GetCPUMem()
func GetCPUDetails() []CPU {
query := "hw.perflevel0.physicalcpu"
perfCores, err := syscall.SysctlUint32(query)
if err != nil {
@ -81,19 +39,16 @@ func GetSystemInfo() SystemInfo {
query = "hw.logicalcpu"
logicalCores, _ := syscall.SysctlUint32(query)
return SystemInfo{
System: CPUInfo{
GpuInfo: GpuInfo{
memInfo: mem,
},
CPUs: []CPU{
{
CoreCount: int(perfCores + efficiencyCores),
EfficiencyCoreCount: int(efficiencyCores),
ThreadCount: int(logicalCores),
},
},
return []CPU{
{
CoreCount: int(perfCores + efficiencyCores),
EfficiencyCoreCount: int(efficiencyCores),
ThreadCount: int(logicalCores),
},
GPUs: GetGPUInfo(),
}
}
func IsNUMA() bool {
// numa support in ggml is linux only
return false
}

View File

@ -1,72 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_H__
#define __GPU_INFO_H__
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <dlfcn.h>
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
#define LOAD_ERR() strdup(dlerror())
#define UNLOAD_LIBRARY(handle) dlclose(handle)
#else
#include <windows.h>
#define LOAD_LIBRARY(lib, flags) LoadLibrary(lib)
#define LOAD_SYMBOL(handle, sym) GetProcAddress(handle, sym)
#define UNLOAD_LIBRARY(handle) FreeLibrary(handle)
#define LOAD_ERR() ({\
LPSTR messageBuffer = NULL; \
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, \
NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&messageBuffer, 0, NULL); \
char *resp = strdup(messageBuffer); \
LocalFree(messageBuffer); \
resp; \
})
#endif
#ifndef LOG
#define LOG(verbose, ...) \
do { \
if (verbose) { \
fprintf(stderr, __VA_ARGS__); \
} \
} while (0)
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define GPU_ID_LEN 64
#define GPU_NAME_LEN 96
typedef struct mem_info {
char *err; // If non-nill, caller responsible for freeing
char gpu_id[GPU_ID_LEN];
char gpu_name[GPU_NAME_LEN];
uint64_t total;
uint64_t free;
uint64_t used;
// Compute Capability
int major;
int minor;
int patch;
} mem_info_t;
void cpu_check_ram(mem_info_t *resp);
#ifdef __cplusplus
}
#endif
#include "gpu_info_cudart.h"
#include "gpu_info_nvcuda.h"
#include "gpu_info_nvml.h"
#include "gpu_info_oneapi.h"
#endif // __GPU_INFO_H__
#endif // __APPLE__

View File

@ -1,181 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_cudart.h"
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
cudartReturn_t ret;
resp->err = NULL;
resp->num_devices = 0;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cudaSetDevice", (void *)&resp->ch.cudaSetDevice},
{"cudaDeviceSynchronize", (void *)&resp->ch.cudaDeviceSynchronize},
{"cudaDeviceReset", (void *)&resp->ch.cudaDeviceReset},
{"cudaMemGetInfo", (void *)&resp->ch.cudaMemGetInfo},
{"cudaGetDeviceCount", (void *)&resp->ch.cudaGetDeviceCount},
{"cudaDeviceGetAttribute", (void *)&resp->ch.cudaDeviceGetAttribute},
{"cudaDriverGetVersion", (void *)&resp->ch.cudaDriverGetVersion},
{"cudaGetDeviceProperties", (void *)&resp->ch.cudaGetDeviceProperties},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(cudart_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", cudart_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
cudart_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.cudaSetDevice)(0);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "cudart init failure: %d", ret);
resp->err = strdup(buf);
return;
}
int version = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cudaDriverGetVersion)(&version);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaDriverGetVersion failed: %d\n", ret);
} else {
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaGetDeviceCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
}
}
void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
cudartMemory_t memInfo = {0,0,0};
cudartReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
if (h.handle == NULL) {
resp->err = strdup("cudart handle isn't initialized");
return;
}
ret = (*h.cudaSetDevice)(i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device failed to initialize");
resp->err = strdup(buf);
return;
}
cudaDeviceProp_t props;
ret = (*h.cudaGetDeviceProperties)(&props, i);
if (ret != CUDART_SUCCESS) {
LOG(h.verbose, "[%d] device properties lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
resp->major = 0;
resp->minor = 0;
} else {
int allNull = 1;
for (int j = 0; j < 16; j++) {
if (props.uuid.bytes[j] != 0) {
allNull = 0;
break;
}
}
if (allNull != 0) {
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
props.uuid.bytes[0],
props.uuid.bytes[1],
props.uuid.bytes[2],
props.uuid.bytes[3],
props.uuid.bytes[4],
props.uuid.bytes[5],
props.uuid.bytes[6],
props.uuid.bytes[7],
props.uuid.bytes[8],
props.uuid.bytes[9],
props.uuid.bytes[10],
props.uuid.bytes[11],
props.uuid.bytes[12],
props.uuid.bytes[13],
props.uuid.bytes[14],
props.uuid.bytes[15]
);
}
resp->major = props.major;
resp->minor = props.minor;
// TODO add other useful properties from props
}
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
resp->err = strdup(buf);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
resp->used = memInfo.used;
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
}
void cudart_release(cudart_handle_t h) {
LOG(h.verbose, "releasing cudart library\n");
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@ -1,145 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_CUDART_H__
#define __GPU_INFO_CUDART_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0,
CUDART_ERROR_INVALID_VALUE = 1,
CUDART_ERROR_MEMORY_ALLOCATION = 2,
CUDART_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} cudartReturn_t;
typedef enum cudartDeviceAttr_enum {
cudartDevAttrComputeCapabilityMajor = 75,
cudartDevAttrComputeCapabilityMinor = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
cudaDevAttrIntegrated = 18
} cudartDeviceAttr_t;
typedef void *cudartDevice_t; // Opaque is sufficient
typedef struct cudartMemory_st {
size_t total;
size_t free;
size_t used;
} cudartMemory_t;
typedef struct cudaUUID {
unsigned char bytes[16];
} cudaUUID_t;
typedef struct cudaDeviceProp {
char name[256]; /**< ASCII string identifying device */
cudaUUID_t uuid; /**< 16-byte unique identifier */
char luid[8]; /**< 8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms */
unsigned int luidDeviceNodeMask; /**< LUID device node mask. Value is undefined on TCC and non-Windows platforms */
size_t totalGlobalMem; /**< Global memory available on device in bytes */
size_t sharedMemPerBlock; /**< Shared memory available per block in bytes */
int regsPerBlock; /**< 32-bit registers available per block */
int warpSize; /**< Warp size in threads */
size_t memPitch; /**< Maximum pitch in bytes allowed by memory copies */
int maxThreadsPerBlock; /**< Maximum number of threads per block */
int maxThreadsDim[3]; /**< Maximum size of each dimension of a block */
int maxGridSize[3]; /**< Maximum size of each dimension of a grid */
int clockRate; /**< Clock frequency in kilohertz */
size_t totalConstMem; /**< Constant memory available on device in bytes */
int major; /**< Major compute capability */
int minor; /**< Minor compute capability */
size_t textureAlignment; /**< Alignment requirement for textures */
size_t texturePitchAlignment; /**< Pitch alignment requirement for texture references bound to pitched memory */
int deviceOverlap; /**< Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount. */
int multiProcessorCount; /**< Number of multiprocessors on device */
int kernelExecTimeoutEnabled; /**< Specified whether there is a run time limit on kernels */
int integrated; /**< Device is integrated as opposed to discrete */
int canMapHostMemory; /**< Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer */
int computeMode; /**< Compute mode (See ::cudaComputeMode) */
int maxTexture1D; /**< Maximum 1D texture size */
int maxTexture1DMipmap; /**< Maximum 1D mipmapped texture size */
int maxTexture1DLinear; /**< Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead. */
int maxTexture2D[2]; /**< Maximum 2D texture dimensions */
int maxTexture2DMipmap[2]; /**< Maximum 2D mipmapped texture dimensions */
int maxTexture2DLinear[3]; /**< Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory */
int maxTexture2DGather[2]; /**< Maximum 2D texture dimensions if texture gather operations have to be performed */
int maxTexture3D[3]; /**< Maximum 3D texture dimensions */
int maxTexture3DAlt[3]; /**< Maximum alternate 3D texture dimensions */
int maxTextureCubemap; /**< Maximum Cubemap texture dimensions */
int maxTexture1DLayered[2]; /**< Maximum 1D layered texture dimensions */
int maxTexture2DLayered[3]; /**< Maximum 2D layered texture dimensions */
int maxTextureCubemapLayered[2];/**< Maximum Cubemap layered texture dimensions */
int maxSurface1D; /**< Maximum 1D surface size */
int maxSurface2D[2]; /**< Maximum 2D surface dimensions */
int maxSurface3D[3]; /**< Maximum 3D surface dimensions */
int maxSurface1DLayered[2]; /**< Maximum 1D layered surface dimensions */
int maxSurface2DLayered[3]; /**< Maximum 2D layered surface dimensions */
int maxSurfaceCubemap; /**< Maximum Cubemap surface dimensions */
int maxSurfaceCubemapLayered[2];/**< Maximum Cubemap layered surface dimensions */
size_t surfaceAlignment; /**< Alignment requirements for surfaces */
int concurrentKernels; /**< Device can possibly execute multiple kernels concurrently */
int ECCEnabled; /**< Device has ECC support enabled */
int pciBusID; /**< PCI bus ID of the device */
int pciDeviceID; /**< PCI device ID of the device */
int pciDomainID; /**< PCI domain ID of the device */
int tccDriver; /**< 1 if device is a Tesla device using TCC driver, 0 otherwise */
int asyncEngineCount; /**< Number of asynchronous engines */
int unifiedAddressing; /**< Device shares a unified address space with the host */
int memoryClockRate; /**< Peak memory clock frequency in kilohertz */
int memoryBusWidth; /**< Global memory bus width in bits */
int l2CacheSize; /**< Size of L2 cache in bytes */
int persistingL2CacheMaxSize; /**< Device's maximum l2 persisting lines capacity setting in bytes */
int maxThreadsPerMultiProcessor;/**< Maximum resident threads per multiprocessor */
int streamPrioritiesSupported; /**< Device supports stream priorities */
int globalL1CacheSupported; /**< Device supports caching globals in L1 */
int localL1CacheSupported; /**< Device supports caching locals in L1 */
size_t sharedMemPerMultiprocessor; /**< Shared memory available per multiprocessor in bytes */
int regsPerMultiprocessor; /**< 32-bit registers available per multiprocessor */
int managedMemory; /**< Device supports allocating managed memory on this system */
int isMultiGpuBoard; /**< Device is on a multi-GPU board */
int multiGpuBoardGroupID; /**< Unique identifier for a group of devices on the same multi-GPU board */
int hostNativeAtomicSupported; /**< Link between the device and the host supports native atomic operations */
int singleToDoublePrecisionPerfRatio; /**< Ratio of single precision performance (in floating-point operations per second) to double precision performance */
int pageableMemoryAccess; /**< Device supports coherently accessing pageable memory without calling cudaHostRegister on it */
int concurrentManagedAccess; /**< Device can coherently access managed memory concurrently with the CPU */
int computePreemptionSupported; /**< Device supports Compute Preemption */
int canUseHostPointerForRegisteredMem; /**< Device can access host registered memory at the same virtual address as the CPU */
int cooperativeLaunch; /**< Device supports launching cooperative kernels via ::cudaLaunchCooperativeKernel */
int cooperativeMultiDeviceLaunch; /**< Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated. */
size_t sharedMemPerBlockOptin; /**< Per device maximum shared memory per block usable by special opt in */
int pageableMemoryAccessUsesHostPageTables; /**< Device accesses pageable memory via the host's page tables */
int directManagedMemAccessFromHost; /**< Host can directly access managed memory on the device without migration. */
int maxBlocksPerMultiProcessor; /**< Maximum number of resident blocks per multiprocessor */
int accessPolicyMaxWindowSize; /**< The maximum value of ::cudaAccessPolicyWindow::num_bytes. */
size_t reservedSharedMemPerBlock; /**< Shared memory reserved by CUDA driver per block in bytes */
} cudaDeviceProp_t;
typedef struct cudart_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
cudartReturn_t (*cudaSetDevice)(int device);
cudartReturn_t (*cudaDeviceSynchronize)(void);
cudartReturn_t (*cudaDeviceReset)(void);
cudartReturn_t (*cudaMemGetInfo)(size_t *, size_t *);
cudartReturn_t (*cudaGetDeviceCount)(int *);
cudartReturn_t (*cudaDeviceGetAttribute)(int* value, cudartDeviceAttr_t attr, int device);
cudartReturn_t (*cudaDriverGetVersion) (int *driverVersion);
cudartReturn_t (*cudaGetDeviceProperties) (cudaDeviceProp_t* prop, int device);
} cudart_handle_t;
typedef struct cudart_init_resp {
char *err; // If err is non-null handle is invalid
cudart_handle_t ch;
int num_devices;
} cudart_init_resp_t;
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
void cudart_bootstrap(cudart_handle_t ch, int device_id, mem_info_t *resp);
// TODO - if we keep this library longer term, add cudart_get_free
void cudart_release(cudart_handle_t ch);
#endif // __GPU_INFO_CUDART_H__
#endif // __APPLE__

View File

@ -1,251 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
CUresult ret;
resp->err = NULL;
resp->num_devices = 0;
resp->cudaErr = CUDA_SUCCESS;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cuInit", (void *)&resp->ch.cuInit},
{"cuDriverGetVersion", (void *)&resp->ch.cuDriverGetVersion},
{"cuDeviceGetCount", (void *)&resp->ch.cuDeviceGetCount},
{"cuDeviceGet", (void *)&resp->ch.cuDeviceGet},
{"cuDeviceGetAttribute", (void *)&resp->ch.cuDeviceGetAttribute},
{"cuDeviceGetUuid", (void *)&resp->ch.cuDeviceGetUuid},
{"cuDeviceGetName", (void *)&resp->ch.cuDeviceGetName},
{"cuCtxCreate_v3", (void *)&resp->ch.cuCtxCreate_v3},
{"cuMemGetInfo_v2", (void *)&resp->ch.cuMemGetInfo_v2},
{"cuCtxDestroy", (void *)&resp->ch.cuCtxDestroy},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvcuda_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvcuda_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvcuda_lib_path, msg);
free(msg);
resp->err = strdup(buf);
resp->cudaErr = -1;
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
resp->cudaErr = -1;
return;
}
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
}
LOG(resp->ch.verbose, "calling cuInit\n");
ret = (*resp->ch.cuInit)(0);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "cuda driver library init failure: %d", ret);
resp->err = strdup(buf);
resp->cudaErr = ret;
return;
}
int version = 0;
resp->ch.driver_major = 0;
resp->ch.driver_minor = 0;
// Report driver version if we're in verbose mode, ignore errors
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
ret = (*resp->ch.cuDriverGetVersion)(&version);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
} else {
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
resp->cudaErr = ret;
return;
}
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
}
const int buflen = 256;
void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
nvcudaMemory_t memInfo = {0,0};
CUresult ret;
CUdevice device = -1;
CUcontext ctx = NULL;
char buf[buflen + 1];
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
if (h.handle == NULL) {
resp->err = strdup("cuda driver library handle isn't initialized");
return;
}
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device failed to initialize");
resp->err = strdup(buf);
return;
}
int major = 0;
int minor = 0;
ret = (*h.cuDeviceGetAttribute)(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device major lookup failure: %d\n", i, ret);
} else {
ret = (*h.cuDeviceGetAttribute)(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device minor lookup failure: %d\n", i, ret);
} else {
resp->minor = minor;
resp->major = major;
}
}
ret = (*h.cuDeviceGetUuid)(&uuid, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device uuid lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
uuid.bytes[0],
uuid.bytes[1],
uuid.bytes[2],
uuid.bytes[3],
uuid.bytes[4],
uuid.bytes[5],
uuid.bytes[6],
uuid.bytes[7],
uuid.bytes[8],
uuid.bytes[9],
uuid.bytes[10],
uuid.bytes[11],
uuid.bytes[12],
uuid.bytes[13],
uuid.bytes[14],
uuid.bytes[15]
);
}
ret = (*h.cuDeviceGetName)(&resp->gpu_name[0], GPU_NAME_LEN, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device name lookup failure: %d\n", i, ret);
resp->gpu_name[0] = '\0';
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library failed to get device context %d", ret);
resp->err = strdup(buf);
return;
}
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device memory info lookup failure %d", ret);
resp->err = strdup(buf);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret);
}
}
void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total) {
CUresult ret;
CUcontext ctx = NULL;
CUdevice device = -1;
*free = 0;
*total = 0;
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device failed to initialize");
return;
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to get device context %d", ret);
return;
}
ret = (*h.cuMemGetInfo_v2)(free, total);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device memory info lookup failure %d", ret);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret);
}
}
void nvcuda_release(nvcuda_handle_t h) {
LOG(h.verbose, "releasing cuda driver library\n");
UNLOAD_LIBRARY(h.handle);
// TODO and other context release logic?
h.handle = NULL;
}
#endif // __APPLE__

View File

@ -1,79 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVCUDA_H__
#define __GPU_INFO_NVCUDA_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudaError_enum {
CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_OUT_OF_MEMORY = 2,
CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
CUDA_ERROR_NO_DEVICE = 100,
CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803,
CUDA_ERROR_UNKNOWN = 999,
// Other values omitted for now...
} CUresult;
typedef enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18
} CUdevice_attribute;
typedef void *nvcudaDevice_t; // Opaque is sufficient
typedef struct nvcudaMemory_st {
uint64_t total;
uint64_t free;
} nvcudaMemory_t;
typedef struct nvcudaDriverVersion {
int major;
int minor;
} nvcudaDriverVersion_t;
typedef struct CUuuid_st {
unsigned char bytes[16];
} CUuuid;
typedef int CUdevice;
typedef void* CUcontext;
typedef struct nvcuda_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
CUresult (*cuInit)(unsigned int Flags);
CUresult (*cuDriverGetVersion)(int *driverVersion);
CUresult (*cuDeviceGetCount)(int *);
CUresult (*cuDeviceGet)(CUdevice* device, int ordinal);
CUresult (*cuDeviceGetAttribute)(int* pi, CUdevice_attribute attrib, CUdevice dev);
CUresult (*cuDeviceGetUuid)(CUuuid* uuid, CUdevice dev); // signature compatible with cuDeviceGetUuid_v2
CUresult (*cuDeviceGetName)(char *name, int len, CUdevice dev);
// Context specific aspects
CUresult (*cuCtxCreate_v3)(CUcontext* pctx, void *params, int len, unsigned int flags, CUdevice dev);
CUresult (*cuMemGetInfo_v2)(uint64_t* free, uint64_t* total);
CUresult (*cuCtxDestroy)(CUcontext ctx);
} nvcuda_handle_t;
typedef struct nvcuda_init_resp {
char *err; // If err is non-null handle is invalid
nvcuda_handle_t ch;
int num_devices;
CUresult cudaErr;
} nvcuda_init_resp_t;
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free, uint64_t *total);
void nvcuda_release(nvcuda_handle_t ch);
#endif // __GPU_INFO_NVCUDA_H__
#endif // __APPLE__

View File

@ -1,104 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvml.h"
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
nvmlReturn_t ret;
resp->err = NULL;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvml_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
resp->ch.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.nvmlInit_v2)();
if (ret != NVML_SUCCESS) {
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
resp->err = strdup(buf);
return;
}
}
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
if (ret != NVML_SUCCESS) {
LOG(1, "unable to get device handle %s: %d", uuid, ret);
*free = 0;
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
*free = 0;
return;
}
*free = memInfo.free;
*total = memInfo.total;
*used = memInfo.used;
}
void nvml_release(nvml_handle_t h) {
LOG(h.verbose, "releasing nvml library\n");
nvmlReturn_t ret;
ret = (*h.nvmlShutdown)();
if (ret != NVML_SUCCESS) {
LOG(1, "error during nvmlShutdown %d", ret);
}
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@ -1,48 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVML_H__
#define __GPU_INFO_NVML_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum nvmlReturn_enum {
NVML_SUCCESS = 0,
// Other values omitted for now...
} nvmlReturn_t;
typedef void *nvmlDevice_t; // Opaque is sufficient
typedef struct nvmlMemory_st {
unsigned long long total;
unsigned long long free;
unsigned long long used;
} nvmlMemory_t;
typedef enum nvmlBrandType_enum
{
NVML_BRAND_UNKNOWN = 0,
} nvmlBrandType_t;
typedef struct nvml_handle {
void *handle;
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml_handle_t;
typedef struct nvml_init_resp {
char *err; // If err is non-null handle is invalid
nvml_handle_t ch;
} nvml_init_resp_t;
typedef struct nvml_compute_capability {
char *err;
int major;
int minor;
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__

View File

@ -1,259 +0,0 @@
#ifndef __APPLE__
#include "gpu_info_oneapi.h"
#include <string.h>
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
ze_result_t ret;
resp->err = NULL;
resp->oh.devices = NULL;
resp->oh.num_devices = NULL;
resp->oh.drivers = NULL;
resp->oh.num_drivers = 0;
const int buflen = 256;
char buf[buflen + 1];
int i, d;
struct lookup {
char *s;
void **p;
} l[] = {
{"zesInit", (void *)&resp->oh.zesInit},
{"zesDriverGet", (void *)&resp->oh.zesDriverGet},
{"zesDeviceGet", (void *)&resp->oh.zesDeviceGet},
{"zesDeviceGetProperties", (void *)&resp->oh.zesDeviceGetProperties},
{"zesDeviceEnumMemoryModules",
(void *)&resp->oh.zesDeviceEnumMemoryModules},
{"zesMemoryGetProperties", (void *)&resp->oh.zesMemoryGetProperties},
{"zesMemoryGetState", (void *)&resp->oh.zesMemoryGetState},
{NULL, NULL},
};
resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY);
if (!resp->oh.handle) {
char *msg = LOAD_ERR();
snprintf(buf, buflen,
"Unable to load %s library to query for Intel GPUs: %s\n",
oneapi_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->oh.verbose,
"wiring Level-Zero management library functions in %s\n",
oneapi_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
if (!*(l[i].p)) {
resp->oh.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->oh.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->oh.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s, msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
LOG(resp->oh.verbose, "calling zesInit\n");
ret = (*resp->oh.zesInit)(0);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesInit err: %x\n", ret);
snprintf(buf, buflen, "oneapi vram init failure: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
LOG(resp->oh.verbose, "calling zesDriverGet\n");
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
LOG(resp->oh.verbose, "oneapi driver count: %d\n", resp->oh.num_drivers);
resp->oh.drivers = malloc(resp->oh.num_drivers * sizeof(zes_driver_handle_t));
resp->oh.num_devices = malloc(resp->oh.num_drivers * sizeof(uint32_t));
memset(&resp->oh.num_devices[0], 0, resp->oh.num_drivers * sizeof(uint32_t));
resp->oh.devices =
malloc(resp->oh.num_drivers * sizeof(zes_device_handle_t *));
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, &resp->oh.drivers[0]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
for (d = 0; d < resp->oh.num_drivers; d++) {
LOG(resp->oh.verbose, "calling zesDeviceGet count %d: %p\n", d, resp->oh.drivers[d]);
ret = (*resp->oh.zesDeviceGet)(resp->oh.drivers[d],
&resp->oh.num_devices[d], NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
resp->oh.devices[d] =
malloc(resp->oh.num_devices[d] * sizeof(zes_device_handle_t));
ret = (*resp->oh.zesDeviceGet)(
resp->oh.drivers[d], &resp->oh.num_devices[d], resp->oh.devices[d]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
}
return;
}
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
mem_info_t *resp) {
ze_result_t ret;
resp->err = NULL;
uint64_t totalMem = 0;
uint64_t usedMem = 0;
const int buflen = 256;
char buf[buflen + 1];
int i, d, m;
if (h.handle == NULL) {
resp->err = strdup("Level-Zero handle not initialized");
return;
}
if (driver > h.num_drivers || device > h.num_devices[driver]) {
resp->err = strdup("driver of device index out of bounds");
return;
}
resp->total = 0;
resp->free = 0;
zes_device_ext_properties_t ext_props;
ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
ext_props.pNext = NULL;
zes_device_properties_t props;
props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
props.pNext = &ext_props;
ret = (*h.zesDeviceGetProperties)(h.devices[driver][device], &props);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get device properties: %d", ret);
resp->err = strdup(buf);
return;
}
snprintf(&resp->gpu_name[0], GPU_NAME_LEN, "%s", props.modelName);
// TODO this needs to map to ONEAPI_DEVICE_SELECTOR syntax
// (this is probably wrong...)
// TODO - the driver isn't included - what if there are multiple drivers?
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", device);
if (h.verbose) {
// When in verbose mode, report more information about
// the card we discover.
LOG(h.verbose, "[%d:%d] oneAPI device name: %s\n", driver, device,
props.modelName);
LOG(h.verbose, "[%d:%d] oneAPI brand: %s\n", driver, device,
props.brandName);
LOG(h.verbose, "[%d:%d] oneAPI vendor: %s\n", driver, device,
props.vendorName);
LOG(h.verbose, "[%d:%d] oneAPI S/N: %s\n", driver, device,
props.serialNumber);
LOG(h.verbose, "[%d:%d] oneAPI board number: %s\n", driver, device,
props.boardNumber);
}
// TODO
// Compute Capability equivalent in resp->major, resp->minor, resp->patch
uint32_t memCount = 0;
ret = (*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount,
NULL);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to enumerate Level-Zero memory modules: %x",
ret);
resp->err = strdup(buf);
return;
}
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
(*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount, mems);
for (m = 0; m < memCount; m++) {
zes_mem_state_t state;
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
state.pNext = NULL;
ret = (*h.zesMemoryGetState)(mems[m], &state);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get memory state: %x", ret);
resp->err = strdup(buf);
free(mems);
return;
}
resp->total += state.size;
resp->free += state.free;
}
free(mems);
}
void oneapi_release(oneapi_handle_t h) {
int d;
LOG(h.verbose, "releasing oneapi library\n");
for (d = 0; d < h.num_drivers; d++) {
if (h.devices != NULL && h.devices[d] != NULL) {
free(h.devices[d]);
}
}
if (h.devices != NULL) {
free(h.devices);
h.devices = NULL;
}
if (h.num_devices != NULL) {
free(h.num_devices);
h.num_devices = NULL;
}
if (h.drivers != NULL) {
free(h.drivers);
h.drivers = NULL;
}
h.num_drivers = 0;
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
int oneapi_get_device_count(oneapi_handle_t h, int driver) {
if (h.handle == NULL || h.num_devices == NULL) {
return 0;
}
if (driver > h.num_drivers) {
return 0;
}
return (int)h.num_devices[driver];
}
#endif // __APPLE__

View File

@ -1,203 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_ONEAPI_H__
#define __GPU_INFO_ONEAPI_H__
#include "gpu_info.h"
#define ZE_MAX_DEVICE_NAME 256
#define ZE_MAX_DEVICE_UUID_SIZE 16
#define ZES_STRING_PROPERTY_SIZE 64
#define ZE_BIT(_i) (1 << _i)
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum ze_result_t {
ZE_RESULT_SUCCESS = 0,
// Other values omitted for now...
} ze_result_t;
typedef uint8_t ze_bool_t;
typedef struct _zes_driver_handle_t *zes_driver_handle_t;
typedef struct _zes_device_handle_t *zes_device_handle_t;
typedef struct _zes_mem_handle_t *zes_mem_handle_t;
typedef enum _ze_structure_type_t {
ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_structure_type_t;
typedef enum _zes_structure_type_t {
ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1,
ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb,
ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e,
ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES = 0x2d,
ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_structure_type_t;
typedef enum _zes_mem_type_t {
ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_mem_type_t;
typedef enum _zes_mem_loc_t {
ZES_MEM_LOC_SYSTEM = 0,
ZES_MEM_LOC_DEVICE = 1,
ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff
} zes_mem_loc_t;
typedef enum _zes_mem_health_t {
ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff
} zes_mem_health_t;
typedef struct _ze_device_uuid_t {
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} ze_device_uuid_t;
typedef struct _zes_uuid_t {
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} zes_uuid_t;
typedef enum _ze_device_type_t {
ZE_DEVICE_TYPE_GPU = 1,
ZE_DEVICE_TYPE_CPU = 2,
ZE_DEVICE_TYPE_FPGA = 3,
ZE_DEVICE_TYPE_MCA = 4,
ZE_DEVICE_TYPE_VPU = 5,
ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_device_type_t;
typedef enum _zes_device_type_t {
ZES_DEVICE_TYPE_GPU = 1,
ZES_DEVICE_TYPE_CPU = 2,
ZES_DEVICE_TYPE_FPGA = 3,
ZES_DEVICE_TYPE_MCA = 4,
ZES_DEVICE_TYPE_VPU = 5,
ZES_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_device_type_t;
typedef uint32_t ze_device_property_flags_t;
typedef enum _ze_device_property_flag_t {
ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
ZE_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
ZE_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
} ze_device_property_flag_t;
typedef uint32_t zes_device_property_flags_t;
typedef enum _zes_device_property_flag_t {
ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
ZES_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
} zes_device_property_flag_t;
typedef struct _ze_device_properties_t {
ze_structure_type_t stype;
void *pNext;
ze_device_type_t type;
uint32_t vendorId;
uint32_t deviceId;
ze_device_property_flags_t flags;
uint32_t subdeviceId;
uint32_t coreClockRate;
uint64_t maxMemAllocSize;
uint32_t maxHardwareContexts;
uint32_t maxCommandQueuePriority;
uint32_t numThreadsPerEU;
uint32_t physicalEUSimdWidth;
uint32_t numEUsPerSubslice;
uint32_t numSubslicesPerSlice;
uint32_t numSlices;
uint64_t timerResolution;
uint32_t timestampValidBits;
uint32_t kernelTimestampValidBits;
ze_device_uuid_t uuid;
char name[ZE_MAX_DEVICE_NAME];
} ze_device_properties_t;
typedef struct _zes_device_properties_t {
zes_structure_type_t stype;
void *pNext;
ze_device_properties_t core;
uint32_t numSubdevices;
char serialNumber[ZES_STRING_PROPERTY_SIZE];
char boardNumber[ZES_STRING_PROPERTY_SIZE];
char brandName[ZES_STRING_PROPERTY_SIZE];
char modelName[ZES_STRING_PROPERTY_SIZE];
char vendorName[ZES_STRING_PROPERTY_SIZE];
char driverVersion[ZES_STRING_PROPERTY_SIZE];
} zes_device_properties_t;
typedef struct _zes_device_ext_properties_t {
zes_structure_type_t stype;
void *pNext;
zes_uuid_t uuid;
zes_device_type_t type;
zes_device_property_flags_t flags;
} zes_device_ext_properties_t;
typedef struct _zes_mem_properties_t {
zes_structure_type_t stype;
void *pNext;
zes_mem_type_t type;
ze_bool_t onSubdevice;
uint32_t subdeviceId;
zes_mem_loc_t location;
uint64_t physicalSize;
int32_t busWidth;
int32_t numChannels;
} zes_mem_properties_t;
typedef struct _zes_mem_state_t {
zes_structure_type_t stype;
const void *pNext;
zes_mem_health_t health;
uint64_t free;
uint64_t size;
} zes_mem_state_t;
typedef struct oneapi_handle {
void *handle;
uint16_t verbose;
uint32_t num_drivers;
zes_driver_handle_t *drivers;
uint32_t *num_devices;
zes_device_handle_t **devices;
// TODO Driver major, minor information
// int driver_major;
// int driver_minor;
ze_result_t (*zesInit)(int);
ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers);
ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount,
zes_device_handle_t *phDevices);
ze_result_t (*zesDeviceGetProperties)(zes_device_handle_t hDevice,
zes_device_properties_t *pProperties);
ze_result_t (*zesDeviceEnumMemoryModules)(zes_device_handle_t hDevice,
uint32_t *pCount,
zes_mem_handle_t *phMemory);
ze_result_t (*zesMemoryGetProperties)(zes_mem_handle_t hMemory,
zes_mem_properties_t *pProperties);
ze_result_t (*zesMemoryGetState)(zes_mem_handle_t hMemory,
zes_mem_state_t *pState);
} oneapi_handle_t;
typedef struct oneapi_init_resp {
char *err; // If err is non-null handle is invalid
oneapi_handle_t oh;
} oneapi_init_resp_t;
typedef struct oneapi_version_resp {
ze_result_t status;
char *str; // Contains version or error string if status != 0
} oneapi_version_resp_t;
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp);
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
mem_info_t *resp);
void oneapi_release(oneapi_handle_t h);
int oneapi_get_device_count(oneapi_handle_t h, int driver);
#endif // __GPU_INFO_INTEL_H__
#endif // __APPLE__

View File

@ -1,60 +0,0 @@
package discover
import (
"runtime"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestBasicGetGPUInfo(t *testing.T) {
info := GetGPUInfo()
assert.NotEmpty(t, len(info))
assert.Contains(t, "cuda rocm cpu metal", info[0].Library)
if info[0].Library != "cpu" {
assert.Greater(t, info[0].TotalMemory, uint64(0))
assert.Greater(t, info[0].FreeMemory, uint64(0))
}
}
func TestCPUMemInfo(t *testing.T) {
info, err := GetCPUMem()
require.NoError(t, err)
switch runtime.GOOS {
case "darwin":
t.Skip("CPU memory not populated on darwin")
case "linux", "windows":
assert.Greater(t, info.TotalMemory, uint64(0))
assert.Greater(t, info.FreeMemory, uint64(0))
default:
return
}
}
func TestByLibrary(t *testing.T) {
type testCase struct {
input []GpuInfo
expect int
}
testCases := map[string]*testCase{
"empty": {input: []GpuInfo{}, expect: 0},
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
resp := (GpuInfoList)(v.input).ByLibrary()
if len(resp) != v.expect {
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
}
})
}
}
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected

542
discover/runner.go Normal file
View File

@ -0,0 +1,542 @@
package discover
// Runner based GPU discovery
import (
"context"
"encoding/json"
"fmt"
"io"
"log/slog"
"math/rand"
"net"
"net/http"
"os"
"os/exec"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
)
var (
deviceMu sync.Mutex
devices []ml.DeviceInfo
libDirs map[string]struct{}
rocmDir string
exe string
bootstrapped bool
)
func GPUDevices(ctx context.Context, runners []FilteredRunnerDiscovery) []ml.DeviceInfo {
deviceMu.Lock()
defer deviceMu.Unlock()
startDiscovery := time.Now()
msg := "overall device VRAM discovery took"
defer func() {
slog.Debug(msg, "duration", time.Since(startDiscovery))
}()
if !bootstrapped {
msg = "GPU bootstrap discovery took"
libDirs = make(map[string]struct{})
var err error
exe, err = os.Executable()
if err != nil {
slog.Error("unable to lookup executable path", "error", err)
return nil
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
files, err := filepath.Glob(filepath.Join(LibOllamaPath, "*", "*ggml-*"))
if err != nil {
slog.Debug("unable to lookup runner library directories", "error", err)
}
for _, file := range files {
libDirs[filepath.Dir(file)] = struct{}{}
}
// Our current packaging model places ggml-hip in the main directory
// but keeps rocm in an isolated directory. We have to add it to
// the [LD_LIBRARY_]PATH so ggml-hip will load properly
rocmDir = filepath.Join(LibOllamaPath, "rocm")
if _, err := os.Stat(rocmDir); err != nil {
rocmDir = ""
}
if len(libDirs) == 0 {
libDirs[""] = struct{}{}
}
slog.Info("discovering available GPUs...")
// For our initial discovery pass, we gather all the known GPUs through
// all the libraries that were detected. This pass may include GPUs that
// are enumerated, but not actually supported.
// We run this in serial to avoid potentially initializing a GPU multiple
// times concurrently leading to memory contention
for dir := range libDirs {
var dirs []string
if dir == "" {
dirs = []string{LibOllamaPath}
} else {
dirs = []string{LibOllamaPath, dir}
}
// Typically bootstrapping takes < 1s, but on some systems, with devices
// in low power/idle mode, initialization can take multiple seconds. We
// set a long timeout just for bootstrap discovery to reduce the chance
// of giving up too quickly
ctx1stPass, cancel := context.WithTimeout(ctx, 30*time.Second)
defer cancel()
// For this pass, we retain duplicates in case any are incompatible with some libraries
devices = append(devices, bootstrapDevices(ctx1stPass, dirs, nil)...)
}
// In the second pass, we more deeply initialize the GPUs to weed out devices that
// aren't supported by a given library. We run this phase in parallel to speed up discovery.
slog.Debug("filtering out unsupported or overlapping GPU library combinations", "count", len(devices))
ctx2ndPass, cancel := context.WithTimeout(ctx, 30*time.Second)
defer cancel()
var wg sync.WaitGroup
needsDelete := make([]bool, len(devices))
supportedMu := sync.Mutex{}
supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index
for i := range devices {
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
if devices[i].Library == "Metal" {
continue
}
slog.Debug("verifying GPU is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "pci_id", devices[i].PCIID)
wg.Add(1)
go func(i int) {
defer wg.Done()
var envVar string
if devices[i].Library == "ROCm" {
if runtime.GOOS != "linux" {
envVar = "HIP_VISIBLE_DEVICES"
} else {
envVar = "ROCR_VISIBLE_DEVICES"
}
} else {
envVar = "CUDA_VISIBLE_DEVICES"
}
extraEnvs := []string{
"GGML_CUDA_INIT=1", // force deep initialization to trigger crash on unsupported GPUs
envVar + "=" + devices[i].ID, // Filter to just this one GPU
}
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
needsDelete[i] = true
} else {
supportedMu.Lock()
if _, ok := supported[devices[i].Library]; !ok {
supported[devices[i].Library] = make(map[string]map[string]int)
}
if _, ok := supported[devices[i].Library][libDir]; !ok {
supported[devices[i].Library][libDir] = make(map[string]int)
}
supported[devices[i].Library][libDir][devices[i].ID] = i
supportedMu.Unlock()
}
}(i)
}
wg.Wait()
logutil.Trace("supported GPU library combinations", "supported", supported)
// Mark for deletion any overlaps - favoring the library version that can cover all GPUs if possible
filterOverlapByLibrary(supported, needsDelete)
// TODO if we ever support multiple ROCm library versions this algorithm will need to be adjusted to keep the rocmID numeric value correct
rocmID := 0
for i := 0; i < len(needsDelete); i++ {
if needsDelete[i] {
logutil.Trace("removing unsupported or overlapping GPU combination", "libDir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1], "description", devices[i].Description, "compute", devices[i].Compute(), "pci_id", devices[i].PCIID)
devices = append(devices[:i], devices[i+1:]...)
needsDelete = append(needsDelete[:i], needsDelete[i+1:]...)
i--
} else if devices[i].Library == "ROCm" {
if _, err := strconv.Atoi(devices[i].ID); err == nil {
// Replace the numeric ID with the post-filtered IDs
devices[i].FilteredID = devices[i].ID
devices[i].ID = strconv.Itoa(rocmID)
}
rocmID++
}
}
// Now filter out any overlap with different libraries (favor CUDA/ROCm over others)
for i := 0; i < len(devices); i++ {
for j := i + 1; j < len(devices); j++ {
// For this pass, we only drop exact duplicates
switch devices[i].Compare(devices[j]) {
case ml.SameBackendDevice:
// Same library and device, skip it
devices = append(devices[:j], devices[j+1:]...)
j--
continue
case ml.DuplicateDevice:
// Different library, choose based on priority
var droppedDevice ml.DeviceInfo
if devices[i].Library == "CUDA" || devices[i].Library == "ROCm" {
droppedDevice = devices[j]
} else {
droppedDevice = devices[i]
devices[i] = devices[j]
}
devices = append(devices[:j], devices[j+1:]...)
j--
typeStr := "discrete"
if droppedDevice.Integrated {
typeStr = "iGPU"
}
slog.Debug("dropping duplicate device",
"id", droppedDevice.ID,
"library", droppedDevice.Library,
"compute", droppedDevice.Compute(),
"name", droppedDevice.Name,
"description", droppedDevice.Description,
"libdirs", strings.Join(droppedDevice.LibraryPath, ","),
"driver", droppedDevice.Driver(),
"pci_id", droppedDevice.PCIID,
"type", typeStr,
"total", format.HumanBytes2(droppedDevice.TotalMemory),
"available", format.HumanBytes2(droppedDevice.FreeMemory),
)
continue
}
}
}
// Reset the libDirs to what we actually wind up using for future refreshes
libDirs = make(map[string]struct{})
for _, dev := range devices {
dir := dev.LibraryPath[len(dev.LibraryPath)-1]
if dir != LibOllamaPath {
libDirs[dir] = struct{}{}
}
}
if len(libDirs) == 0 {
libDirs[""] = struct{}{}
}
bootstrapped = true
} else {
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
// metal never updates free VRAM
return devices
}
slog.Debug("refreshing free memory")
updated := make([]bool, len(devices))
allDone := func() bool {
allDone := true
for _, done := range updated {
if !done {
allDone = false
break
}
}
return allDone
}
// First try to use existing runners to refresh VRAM since they're already
// active on GPU(s)
for _, runner := range runners {
if runner == nil {
continue
}
deviceIDs := runner.GetActiveDeviceIDs()
if len(deviceIDs) == 0 {
// Skip this runner since it doesn't have active GPU devices
continue
}
// Check to see if this runner is active on any devices that need a refresh
skip := true
devCheck:
for _, dev := range deviceIDs {
for i := range devices {
if dev == devices[i].DeviceID {
if !updated[i] {
skip = false
break devCheck
}
}
}
}
if skip {
continue
}
// Typical refresh on existing runner is ~500ms but allow longer if the system
// is under stress before giving up and using stale data.
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
start := time.Now()
updatedDevices := runner.GetDeviceInfos(ctx)
slog.Debug("existing runner discovery took", "duration", time.Since(start))
for _, u := range updatedDevices {
for i := range devices {
if u.DeviceID == devices[i].DeviceID {
updated[i] = true
devices[i].FreeMemory = u.FreeMemory
break
}
}
}
// Short circuit if we've updated all the devices
if allDone() {
break
}
}
if !allDone() {
slog.Debug("unable to refresh all GPUs with existing runners, performing bootstrap discovery")
// Bootstrapping may take longer in some cases (AMD windows), but we
// would rather use stale free data to get the model running sooner
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
for dir := range libDirs {
updatedDevices := bootstrapDevices(ctx, []string{LibOllamaPath, dir}, nil)
for _, u := range updatedDevices {
for i := range devices {
if u.DeviceID == devices[i].DeviceID {
updated[i] = true
devices[i].FreeMemory = u.FreeMemory
break
}
}
// TODO - consider evaluating if new devices have appeared (e.g. hotplug)
}
if allDone() {
break
}
}
if !allDone() {
slog.Warn("unable to refresh free memory, using old values")
}
}
}
return devices
}
func filterOverlapByLibrary(supported map[string]map[string]map[string]int, needsDelete []bool) {
// For multi-GPU systems, use the newest version that supports all the GPUs
for _, byLibDirs := range supported {
libDirs := make([]string, 0, len(byLibDirs))
for libDir := range byLibDirs {
libDirs = append(libDirs, libDir)
}
sort.Sort(sort.Reverse(sort.StringSlice(libDirs)))
anyMissing := false
var newest string
for _, newest = range libDirs {
for _, libDir := range libDirs {
if libDir == newest {
continue
}
if len(byLibDirs[newest]) != len(byLibDirs[libDir]) {
anyMissing = true
break
}
for dev := range byLibDirs[newest] {
if _, found := byLibDirs[libDir][dev]; !found {
anyMissing = true
break
}
}
}
if !anyMissing {
break
}
}
// Now we can mark overlaps for deletion
for _, libDir := range libDirs {
if libDir == newest {
continue
}
for dev, i := range byLibDirs[libDir] {
if _, found := byLibDirs[newest][dev]; found {
needsDelete[i] = true
}
}
}
}
}
type bootstrapRunner struct {
port int
cmd *exec.Cmd
}
func (r *bootstrapRunner) GetPort() int {
return r.port
}
func (r *bootstrapRunner) HasExited() bool {
if r.cmd != nil && r.cmd.ProcessState != nil {
return true
}
return false
}
func bootstrapDevices(ctx context.Context, ollamaLibDirs []string, extraEnvs []string) []ml.DeviceInfo {
// TODO DRY out with llm/server.go
slog.Debug("spawing runner with", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs)
start := time.Now()
defer func() {
slog.Debug("bootstrap discovery took", "duration", time.Since(start), "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs)
}()
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed, using random port")
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
params := []string{"runner", "--ollama-engine", "--port", strconv.Itoa(port)}
var pathEnv string
switch runtime.GOOS {
case "windows":
pathEnv = "PATH"
case "darwin":
pathEnv = "DYLD_LIBRARY_PATH"
default:
pathEnv = "LD_LIBRARY_PATH"
}
libraryPaths := append([]string{LibOllamaPath}, ollamaLibDirs...)
if rocmDir != "" {
libraryPaths = append(libraryPaths, rocmDir)
}
// Note: we always put our dependency paths first
// since these are the exact version we compiled/linked against
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
cmd := exec.Command(exe, params...)
cmd.Env = os.Environ()
if envconfig.LogLevel() == logutil.LevelTrace {
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
}
// cmd.SysProcAttr = llm.LlamaServerSysProcAttr // circular dependency - bring back once refactored
cmd.Env = append(cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(ollamaLibDirs, string(filepath.ListSeparator)))
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
pathNeeded := true
extraDone := make([]bool, len(extraEnvs))
for i := range cmd.Env {
cmp := strings.SplitN(cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else {
for j := range extraEnvs {
if extraDone[j] {
continue
}
extra := strings.SplitN(extraEnvs[j], "=", 2)
if cmp[0] == extra[0] {
cmd.Env[i] = extraEnvs[j]
extraDone[j] = true
}
}
}
}
if pathNeeded {
cmd.Env = append(cmd.Env, pathEnv+"="+pathEnvVal)
}
for i := range extraDone {
if !extraDone[i] {
cmd.Env = append(cmd.Env, extraEnvs[i])
}
}
logutil.Trace("starting runner for device discovery", "env", cmd.Env, "cmd", cmd)
if err := cmd.Start(); err != nil {
slog.Warn("unable to start discovery subprocess", "cmd", cmd, "error", err)
return nil
}
go func() {
cmd.Wait() // exit status ignored
}()
defer cmd.Process.Kill()
devices, err := GetDevicesFromRunner(ctx, &bootstrapRunner{port: port, cmd: cmd})
if err != nil {
if cmd.ProcessState != nil && cmd.ProcessState.ExitCode() >= 0 {
// Expected during bootstrapping while we filter out unsupported AMD GPUs
logutil.Trace("runner exited", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "code", cmd.ProcessState.ExitCode())
} else {
slog.Info("failure during GPU discovery", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "error", err)
}
}
logutil.Trace("runner enumerated devices", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "devices", devices)
return devices
}
func GetDevicesFromRunner(ctx context.Context, runner BaseRunner) ([]ml.DeviceInfo, error) {
var moreDevices []ml.DeviceInfo
port := runner.GetPort()
tick := time.Tick(10 * time.Millisecond)
for {
select {
case <-ctx.Done():
return nil, fmt.Errorf("failed to finish discovery before timeout")
case <-tick:
r, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/info", port), nil)
if err != nil {
return nil, fmt.Errorf("failed to create request: %w", err)
}
r.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(r)
if err != nil {
// slog.Warn("failed to send request", "error", err)
if runner.HasExited() {
return nil, fmt.Errorf("runner crashed")
}
continue
}
defer resp.Body.Close()
if resp.StatusCode == http.StatusNotFound {
// old runner, fall back to bootstrapping model
return nil, fmt.Errorf("llamarunner free vram reporting not supported")
}
body, err := io.ReadAll(resp.Body)
if err != nil {
slog.Warn("failed to read response", "error", err)
continue
}
if resp.StatusCode != 200 {
logutil.Trace("runner failed to discover free VRAM", "status", resp.StatusCode, "response", body)
return nil, fmt.Errorf("runner error: %s", string(body))
}
if err := json.Unmarshal(body, &moreDevices); err != nil {
slog.Warn("unmarshal encode response", "error", err)
continue
}
return moreDevices, nil
}
}
}

108
discover/runner_test.go Normal file
View File

@ -0,0 +1,108 @@
package discover
import (
"testing"
"github.com/ollama/ollama/app/lifecycle"
)
func init() {
lifecycle.InitLogging()
}
func TestFilterOverlapByLibrary(t *testing.T) {
type testcase struct {
name string
inp map[string]map[string]map[string]int
exp []bool
}
for _, tc := range []testcase{
{
name: "empty",
inp: map[string]map[string]map[string]int{},
exp: []bool{}, // needs deletion
},
{
name: "single no overlap",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
},
},
exp: []bool{false},
},
{
name: "100% overlap pick 2nd",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
},
},
},
exp: []bool{true, true, false, false},
},
{
name: "100% overlap pick 1st",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
},
},
},
exp: []bool{false, false, true, true},
},
{
name: "partial overlap pick older",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 1,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 2,
},
},
},
exp: []bool{true, false, false},
},
{
name: "no overlap",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
"cuda_v12": {
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
},
},
exp: []bool{false, false},
},
} {
t.Run(tc.name, func(t *testing.T) {
needsDelete := make([]bool, len(tc.exp))
filterOverlapByLibrary(tc.inp, needsDelete)
for i, exp := range tc.exp {
if needsDelete[i] != exp {
t.Fatalf("expected: %v\ngot: %v", tc.exp, needsDelete)
}
}
})
}
}

View File

@ -1,10 +1,14 @@
package discover
import (
"fmt"
"context"
"log/slog"
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type memInfo struct {
@ -15,8 +19,8 @@ type memInfo struct {
// Beginning of an `ollama info` command
type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
ml.DeviceID
memInfo
Library string `json:"library,omitempty"`
// Optional variant to select (e.g. versions, cpu feature flags)
Variant string `json:"variant"`
@ -27,17 +31,13 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key=value]
EnvWorkarounds []string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
// False indicates FreeMemory can generally be trusted on this GPU
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
filterID int //nolint:unused,nolintlint // AMD Workaround: The numeric ID of the device used to filter out other devices
filterID string // AMD Workaround: The numeric ID of the device used to filter out other devices
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
@ -70,37 +70,8 @@ type CPU struct {
ThreadCount int
}
type CudaGPUInfo struct {
GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
computeMajor int //nolint:unused,nolintlint
computeMinor int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo
type RocmGPUInfo struct {
GpuInfo
usedFilepath string //nolint:unused,nolintlint
index int //nolint:unused,nolintlint
}
type RocmGPUInfoList []RocmGPUInfo
type OneapiGPUInfo struct {
GpuInfo
driverIndex int //nolint:unused,nolintlint
gpuIndex int //nolint:unused,nolintlint
}
type OneapiGPUInfoList []OneapiGPUInfo
type GpuInfoList []GpuInfo
type UnsupportedGPUInfo struct {
GpuInfo
Reason string `json:"reason"`
}
// Split up the set of gpu info's by Library and variant
func (l GpuInfoList) ByLibrary() []GpuInfoList {
resp := []GpuInfoList{}
libs := []string{}
@ -125,18 +96,47 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
return resp
}
// Report the GPU information into the log an Info level
func (l GpuInfoList) LogDetails() {
for _, g := range l {
func LogDetails(devices []ml.DeviceInfo) {
for _, dev := range devices {
var libs []string
for _, dir := range dev.LibraryPath {
if strings.Contains(dir, filepath.Join("lib", "ollama")) {
libs = append(libs, filepath.Base(dir))
}
}
typeStr := "discrete"
if dev.Integrated {
typeStr = "iGPU"
}
slog.Info("inference compute",
"id", g.ID,
"library", g.Library,
"variant", g.Variant,
"compute", g.Compute,
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
"name", g.Name,
"total", format.HumanBytes2(g.TotalMemory),
"available", format.HumanBytes2(g.FreeMemory),
"id", dev.ID,
"library", dev.Library,
"compute", dev.Compute(),
"name", dev.Name,
"description", dev.Description,
"libdirs", strings.Join(libs, ","),
"driver", dev.Driver(),
"pci_id", dev.PCIID,
"type", typeStr,
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
// CPU inference
if len(devices) == 0 {
dev, _ := GetCPUMem()
slog.Info("inference compute",
"id", "cpu",
"library", "cpu",
"compute", "",
"name", "cpu",
"description", "cpu",
"libdirs", "ollama",
"driver", "",
"pci_id", "",
"type", "",
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
}
@ -149,16 +149,15 @@ func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
type SystemInfo struct {
System CPUInfo `json:"system"`
GPUs []GpuInfo `json:"gpus"`
UnsupportedGPUs []UnsupportedGPUInfo `json:"unsupported_gpus"`
DiscoveryErrors []string `json:"discovery_errors"`
System CPUInfo `json:"system"`
GPUs []GpuInfo `json:"gpus"`
}
// Return the optimal number of threads to use for inference
func (si SystemInfo) GetOptimalThreadCount() int {
if len(si.System.CPUs) == 0 {
return 0
// Fall back to Go's num CPU
return runtime.NumCPU()
}
coreCount := 0
@ -173,9 +172,9 @@ func (si SystemInfo) GetOptimalThreadCount() int {
func (l GpuInfoList) FlashAttentionSupported() bool {
for _, gpu := range l {
supportsFA := gpu.Library == "cpu" ||
gpu.Library == "metal" ||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
gpu.Library == "rocm"
gpu.Name == "Metal" || gpu.Library == "Metal" ||
(gpu.Library == "CUDA" && gpu.DriverMajor >= 7) ||
gpu.Library == "ROCm"
if !supportsFA {
return false
@ -183,3 +182,31 @@ func (l GpuInfoList) FlashAttentionSupported() bool {
}
return true
}
type BaseRunner interface {
// GetPort returns the localhost port number the runner is running on
GetPort() int
// HasExited indicates if the runner is no longer running. This can be used during
// bootstrap to detect if a given filtered device is incompatible and triggered an assert
HasExited() bool
}
type RunnerDiscovery interface {
BaseRunner
// GetDeviceInfos will perform a query of the underlying device libraries
// for device identification and free VRAM information
// During bootstrap scenarios, this routine may take seconds to complete
GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
}
type FilteredRunnerDiscovery interface {
RunnerDiscovery
// GetActiveDeviceIDs returns the filtered set of devices actively in
// use by this runner for running models. If the runner is a bootstrap runner, no devices
// will be active yet so no device IDs are returned.
// This routine will not query the underlying device and will return immediately
GetActiveDeviceIDs() []ml.DeviceID
}

40
docs/cloud.md Normal file
View File

@ -0,0 +1,40 @@
# Cloud
| Ollama's cloud is currently in preview. For full documentation, see [Ollama's documentation](https://docs.ollama.com/cloud).
## Cloud Models
[Cloud models](https://ollama.com/cloud) are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldnt fit on a personal computer.
Ollama currently supports the following cloud models, with more coming soon:
- `gpt-oss:20b-cloud`
- `gpt-oss:120b-cloud`
- `deepseek-v3.1:671b-cloud`
- `qwen3-coder:480b-cloud`
### Get started
To run a cloud model, open the terminal and run:
```
ollama run gpt-oss:120b-cloud
```
To run cloud models with integrations that work with Ollama, first download the cloud model:
```
ollama pull qwen3-coder:480b-cloud
```
Then sign in to Ollama:
```
ollama signin
```
Finally, access the model using the model name `qwen3-coder:480b-cloud` via Ollama's local API or tooling.
## Cloud API access
Cloud models can also be accessed directly on ollama.com's API. For more information, see the [docs](https://docs.ollama.com/cloud).

View File

@ -65,6 +65,9 @@ With ROCm v6.1, the following GPUs are supported on Windows.
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
### Known Workarounds
- The RX Vega 56 requires `HSA_ENABLE_SDMA=0` to disable SDMA
### Overrides on Linux
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In

View File

@ -1,107 +0,0 @@
# Turbo
> ⚠ Turbo is preview
Ollamas [Turbo](https://ollama.com/turbo) is a new way to run open-source models with acceleration from datacenter-grade hardware.
Currently, the following models are available in Turbo:
- `gpt-oss:20b`
- `gpt-oss:120b`
## Get started
### Ollama for macOS & Windows
Download Ollama
- Select a model such as `gpt-oss:20b` or `gpt-oss:120b`
- Click on **Turbo**. Youll be prompted to create an account or sign in
### Ollamas CLI
- [Sign up](https://ollama.com/signup) for an Ollama account
- Add your Ollama key [to ollama.com](https://ollama.com/settings/keys).
On macOS and Linux:
```shell
cat ~/.ollama/id_ed25519.pub
```
On Windows:
```
type "%USERPROFILE%\.ollama\id_ed25519.pub"
```
- Then run a model setting `OLLAMA_HOST` to `ollama.com`:
```shell
OLLAMA_HOST=ollama.com ollama run gpt-oss:120b
```
### Ollamas Python library
- Download Ollama's [Python library](https://github.com/ollama/ollama-python)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```python
from ollama import Client
client = Client(
host="https://ollama.com",
headers={'Authorization': '<api key>'}
)
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
### Ollamas JavaScript library
- Download Ollama's [JavaScript library](https://github.com/ollama/ollama-js)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```typescript
import { Ollama } from 'ollama';
const ollama = new Ollama({
host: 'https://ollama.com',
headers: {
Authorization: "Bearer <api key>"
}
});
const response = await ollama.chat({
model: 'gpt-oss:120b',
messages: [{ role: 'user', content: 'Explain quantum computing' }],
stream: true
});
for await (const part of response) {
process.stdout.write(part.message.content)
}
```
### Community integrations
Turbo mode is also compatible with several community integrations.
#### Open WebUI
- Go to **settings****Admin settings** → **Connections**
- Under **Ollama API,** click **+**
- For the **URL** put `https://ollama.com`
- For the **API key,** create an API key on https://ollama.com/settings/keys and add it.
- Click **Save**
Now, if you navigate to the model selector, Turbo models should be available under **External**.

View File

@ -244,6 +244,7 @@ func (kv KV) OllamaEngineRequired() bool {
"gemma3n",
"mistral3",
"qwen3",
"qwen3moe",
"llama4",
"mllama",
"qwen25vl",

View File

@ -1,6 +1,7 @@
package harmony
import (
"encoding/json"
"fmt"
"log/slog"
"strings"
@ -265,6 +266,8 @@ type HarmonyMessageHandler struct {
state harmonyMessageState
HarmonyParser *HarmonyParser
FunctionNameMap *FunctionNameMap
toolAccumulator *HarmonyToolCallAccumulator
convertedTools map[string]struct{}
}
// NewHarmonyMessageHandler creates a new message handler
@ -277,6 +280,7 @@ func NewHarmonyMessageHandler() *HarmonyMessageHandler {
HeaderEndTag: "<|message|>",
},
FunctionNameMap: NewFunctionNameMap(),
convertedTools: make(map[string]struct{}),
}
}
@ -384,8 +388,85 @@ func NewFunctionNameMap() *FunctionNameMap {
}
}
// Init initializes the handler with tools and optional last message
// Implements the Parser interface
func (h *HarmonyMessageHandler) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
// Initialize the harmony parser
if h.HarmonyParser == nil {
h.HarmonyParser = &HarmonyParser{
MessageStartTag: "<|start|>",
MessageEndTag: "<|end|>",
HeaderEndTag: "<|message|>",
}
}
// Handle prefill for chat mode
if lastMessage != nil {
h.HarmonyParser.AddImplicitStartOrPrefill(lastMessage)
} else {
h.HarmonyParser.AddImplicitStart()
}
// Initialize tool accumulator
h.toolAccumulator = h.CreateToolParser()
// Process tools and return renamed versions
if len(tools) == 0 {
return tools
}
processedTools := make([]api.Tool, len(tools))
copy(processedTools, tools)
for i, tool := range processedTools {
if tool.Function.Name != "" {
processedTools[i].Function.Name = h.FunctionNameMap.ConvertAndAdd(tool.Function.Name)
h.convertedTools[tool.Function.Name] = struct{}{}
}
}
return processedTools
}
// Add implements the Parser interface - processes streamed content and extracts content, thinking, and tool calls
func (h *HarmonyMessageHandler) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
content, thinking, toolContent := h.AddContent(s, h.toolAccumulator)
if toolContent != "" {
h.toolAccumulator.Add(toolContent)
}
// tool calls always happen one at a time, and always at the end of a message,
// so for simplicity we defer parsing them until we know we're done
if done {
toolName, raw := h.toolAccumulator.Drain()
if toolName != nil {
name := strings.TrimPrefix(*toolName, "functions.")
name = h.FunctionNameMap.OriginalFromConverted(name)
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(raw), &args); err != nil {
return "", "", nil, fmt.Errorf("error parsing tool call: raw='%s', err=%w", raw, err)
}
calls = append(calls, api.ToolCall{Function: api.ToolCallFunction{Name: name, Arguments: args}})
}
}
return content, thinking, calls, nil
}
// HasToolSupport implements the Parser interface
func (h *HarmonyMessageHandler) HasToolSupport() bool {
return true
}
// HasThinkingSupport implements the Parser interface
func (h *HarmonyMessageHandler) HasThinkingSupport() bool {
return true
}
func (m *FunctionNameMap) ConvertAndAdd(userFunctionName string) string {
harmonyFunctionName := m.deriveName(userFunctionName)
// built-in functions should not be renamed
if userFunctionName == "browser.open" || userFunctionName == "browser.search" || userFunctionName == "browser.find" || userFunctionName == "python" {
harmonyFunctionName = userFunctionName
}
m.userToHarmony[userFunctionName] = harmonyFunctionName
m.harmonyToUser[harmonyFunctionName] = userFunctionName
return harmonyFunctionName

View File

@ -513,6 +513,7 @@ func TestFunctionConvertAndAdd(t *testing.T) {
{name: "dupes from different user-specified names", in: []string{"get weather", "get_weather", "get-weather"}, want: []string{"get_weather", "get_weather_2", "get_weather_3"}},
{name: "non dupes after dupes", in: []string{"get weather", "get_weather", "get-weather", "something-different"}, want: []string{"get_weather", "get_weather_2", "get_weather_3", "something_different"}},
{name: "multiple sets of dupes", in: []string{"a", "a", "b", "a", "a", "b", "a"}, want: []string{"a", "a_2", "b", "a_3", "a_4", "b_2", "a_5"}},
{name: "built-in functions should not be renamed", in: []string{"browser.open", "python", "not.a.built-in.function", "browser.not_a_real_built_in"}, want: []string{"browser.open", "python", "not_a_built_in_function", "browser_not_a_real_built_in"}},
}
for i, tt := range tests {

View File

@ -12,3 +12,6 @@ The integration tests have 2 modes of operating.
> [!IMPORTANT]
> Before running the tests locally without the "test existing" setting, compile ollama from the top of the source tree `go build .` in addition to GPU support with cmake if applicable on your platform. The integration tests expect to find an ollama binary at the top of the tree.
Many tests use a default small model suitable to run on many systems. You can override this default model by setting `OLLAMA_TEST_DEFAULT_MODEL`

View File

@ -22,13 +22,12 @@ func TestAPIGenerate(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Prompt: "why is the sky blue? be brief",
Prompt: blueSkyPrompt,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
}
anyResp := []string{"rayleigh", "scattering"}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
@ -120,14 +119,14 @@ func TestAPIGenerate(t *testing.T) {
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range anyResp {
for _, resp := range blueSkyExpected {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Errorf("none of %v found in %s", anyResp, response)
t.Errorf("none of %v found in %s", blueSkyExpected, response)
}
case <-ctx.Done():
t.Error("outer test context done while waiting for generate")
@ -181,7 +180,7 @@ func TestAPIChat(t *testing.T) {
Messages: []api.Message{
{
Role: "user",
Content: "why is the sky blue? be brief",
Content: blueSkyPrompt,
},
},
Options: map[string]interface{}{
@ -189,7 +188,6 @@ func TestAPIChat(t *testing.T) {
"seed": 123,
},
}
anyResp := []string{"rayleigh", "scattering"}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
@ -279,14 +277,14 @@ func TestAPIChat(t *testing.T) {
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range anyResp {
for _, resp := range blueSkyExpected {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Errorf("none of %v found in %s", anyResp, response)
t.Errorf("none of %v found in %s", blueSkyExpected, response)
}
case <-ctx.Done():
t.Error("outer test context done while waiting for chat")

View File

@ -19,14 +19,14 @@ func TestBlueSky(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Prompt: "why is the sky blue?",
Prompt: blueSkyPrompt,
Stream: &stream,
Options: map[string]any{
"temperature": 0,
"seed": 123,
},
}
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
GenerateTestHelper(ctx, t, req, blueSkyExpected)
}
func TestUnicode(t *testing.T) {
@ -110,12 +110,12 @@ func TestUnicodeModelDir(t *testing.T) {
req := api.GenerateRequest{
Model: smol,
Prompt: "why is the sky blue?",
Prompt: blueSkyPrompt,
Stream: &stream,
Options: map[string]any{
"temperature": 0,
"seed": 123,
},
}
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
GenerateTestHelper(ctx, t, req, blueSkyExpected)
}

View File

@ -63,11 +63,11 @@ func TestContextExhaustion(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived", "sunny", "cloudy", "clear", "water"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived", "sunny", "cloudy", "clear", "water", "time", "travel", "world"}, 120*time.Second, 10*time.Second)
}
// Send multiple generate requests with prior context and ensure the response is coherant and expected
func TestGenerateWithHistory(t *testing.T) {
func TestParallelGenerateWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := GenerateRequests()
numParallel := 2
@ -113,8 +113,48 @@ func TestGenerateWithHistory(t *testing.T) {
wg.Wait()
}
// Send generate requests with prior context and ensure the response is coherant and expected
func TestGenerateWithHistory(t *testing.T) {
req := api.GenerateRequest{
Model: smol,
Prompt: rainbowPrompt,
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"num_ctx": 16384,
},
}
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial request
slog.Info("loading", "model", req.Model)
err := client.Generate(ctx,
&api.GenerateRequest{Model: req.Model, KeepAlive: &api.Duration{Duration: 10 * time.Second}, Options: req.Options},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", req.Model, err)
}
req.Context = DoGenerate(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
for i := 0; i < len(rainbowFollowups); i++ {
req.Prompt = rainbowFollowups[i]
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
req.Context = DoGenerate(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
}
}
// Send multiple chat requests with prior context and ensure the response is coherant and expected
func TestChatWithHistory(t *testing.T) {
func TestParallelChatWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := ChatRequests()
numParallel := 2
@ -164,3 +204,55 @@ func TestChatWithHistory(t *testing.T) {
}
wg.Wait()
}
// Send generate requests with prior context and ensure the response is coherant and expected
func TestChatWithHistory(t *testing.T) {
req := api.ChatRequest{
Model: smol,
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"num_ctx": 16384,
},
Messages: []api.Message{
{
Role: "user",
Content: rainbowPrompt,
},
},
}
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial request
slog.Info("loading", "model", req.Model)
err := client.Generate(ctx,
&api.GenerateRequest{Model: req.Model, KeepAlive: &api.Duration{Duration: 10 * time.Second}, Options: req.Options},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", req.Model, err)
}
assistant := DoChat(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
for i := 0; i < len(rainbowFollowups); i++ {
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
req.Messages = append(req.Messages,
*assistant,
api.Message{Role: "user", Content: rainbowFollowups[i]},
)
assistant = DoChat(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
if assistant == nil {
t.Fatalf("didn't get an assistant response for context")
}
}
}

View File

@ -8,6 +8,7 @@ import (
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
@ -44,9 +45,8 @@ func TestAllMiniLMEmbeddings(t *testing.T) {
}
res, err := embeddingTestHelper(ctx, client, t, req)
if err != nil {
t.Fatalf("error: %v", err)
t.Fatal(err)
}
if len(res.Embedding) != 384 {
@ -74,9 +74,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatalf("error: %v", err)
t.Fatal(err)
}
if len(res.Embeddings) != 1 {
@ -112,9 +111,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatalf("error: %v", err)
t.Fatal(err)
}
if len(res.Embeddings) != 2 {
@ -156,93 +154,135 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
truncTrue, truncFalse := true, false
type testReq struct {
Name string
Request api.EmbedRequest
want, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why",
})
if err != nil {
t.Fatal(err)
}
reqs := []testReq{
cases := []struct {
name string
request api.EmbedRequest
check func(*api.EmbedResponse, error)
}{
{
Name: "Target Truncation",
Request: api.EmbedRequest{
name: "target truncation",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why",
},
},
{
Name: "Default Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 1},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
Name: "Explicit Truncate",
Request: api.EmbedRequest{
name: "default truncate",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "explicit truncate",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
}
res := make(map[string]*api.EmbedResponse)
for _, req := range reqs {
response, err := embedTestHelper(ctx, client, t, req.Request)
if err != nil {
t.Fatalf("error: %v", err)
}
res[req.Name] = response
}
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
t.Fatal("expected default request to truncate correctly")
}
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
t.Fatal("expected default request and truncate true request to be the same")
}
// check that truncate set to false returns an error if context length is exceeded
_, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 1},
})
if err == nil {
t.Fatal("expected error, got nil")
for _, req := range cases {
t.Run(req.name, func(t *testing.T) {
req.check(embedTestHelper(ctx, client, t, req.request))
})
}
}
func embeddingTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
t.Fatal(err)
}
response, err := client.Embeddings(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
return client.Embeddings(ctx, &req)
}
func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
t.Fatal(err)
}
response, err := client.Embed(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
return client.Embed(ctx, &req)
}

View File

@ -4,7 +4,9 @@ package integration
import (
"context"
"fmt"
"log/slog"
"os"
"testing"
"time"
@ -20,6 +22,7 @@ func TestLibraryModelsGenerate(t *testing.T) {
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
targetArch := os.Getenv("OLLAMA_TEST_ARCHITECTURE")
chatModels := libraryChatModels
for _, model := range chatModels {
@ -30,16 +33,26 @@ func TestLibraryModelsGenerate(t *testing.T) {
if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatalf("pull failed %s", err)
}
if targetArch != "" {
resp, err := client.Show(ctx, &api.ShowRequest{Name: model})
if err != nil {
t.Fatalf("unable to show model: %s", err)
}
arch := resp.ModelInfo["general.architecture"].(string)
if arch != targetArch {
t.Skip(fmt.Sprintf("Skipping %s architecture %s != %s", model, arch, targetArch))
}
}
req := api.GenerateRequest{
Model: model,
Prompt: "why is the sky blue?",
Prompt: blueSkyPrompt,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
"temperature": 0.1,
"seed": 123,
},
}
anyResp := []string{"rayleigh", "scatter", "atmosphere", "nitrogen", "oxygen", "wavelength"}
anyResp := blueSkyExpected
// Special cases
if model == "duckdb-nsql" {
anyResp = []string{"select", "from"}

View File

@ -68,14 +68,13 @@ func TestModelsGenerate(t *testing.T) {
// TODO - fiddle with context size
req := api.GenerateRequest{
Model: model,
Prompt: "why is the sky blue?",
Prompt: blueSkyPrompt,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
}
anyResp := []string{"rayleigh", "scattering", "atmosphere", "nitrogen", "oxygen"}
DoGenerate(ctx, t, client, req, anyResp, 120*time.Second, 30*time.Second)
DoGenerate(ctx, t, client, req, blueSkyExpected, 120*time.Second, 30*time.Second)
})
}
}

View File

@ -40,6 +40,18 @@ var (
// cat int.log | grep MODEL_PERF_HEADER | head -1| cut -f2- -d: > perf.csv
// cat int.log | grep MODEL_PERF_DATA | cut -f2- -d: >> perf.csv
func TestModelsPerf(t *testing.T) {
if s := os.Getenv("OLLAMA_NEW_ENGINE"); s != "" {
doModelPerfTest(t, ollamaEngineChatModels)
} else {
doModelPerfTest(t, append(ollamaEngineChatModels, llamaRunnerChatModels...))
}
}
func TestLibraryModelsPerf(t *testing.T) {
doModelPerfTest(t, libraryChatModels)
}
func doModelPerfTest(t *testing.T, chatModels []string) {
softTimeout, hardTimeout := getTimeouts(t)
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
@ -65,14 +77,12 @@ func TestModelsPerf(t *testing.T) {
}
longPrompt := "summarize the following: " + string(data)
var chatModels []string
if s := os.Getenv("OLLAMA_NEW_ENGINE"); s != "" {
chatModels = ollamaEngineChatModels
} else {
chatModels = append(ollamaEngineChatModels, llamaRunnerChatModels...)
}
targetArch := os.Getenv("OLLAMA_TEST_ARCHITECTURE")
for _, model := range chatModels {
if !strings.Contains(model, ":") {
model = model + ":latest"
}
t.Run(model, func(t *testing.T) {
if time.Now().Sub(started) > softTimeout {
t.Skip("skipping remaining tests to avoid excessive runtime")
@ -88,6 +98,9 @@ func TestModelsPerf(t *testing.T) {
}
arch := resp.ModelInfo["general.architecture"].(string)
maxContext = int(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))
if targetArch != "" && arch != targetArch {
t.Skip(fmt.Sprintf("Skipping %s architecture %s != %s", model, arch, targetArch))
}
if maxVram > 0 {
resp, err := client.List(ctx)
@ -151,8 +164,8 @@ func TestModelsPerf(t *testing.T) {
prompt string
anyResp []string
}{
{"why is the sky blue?", []string{"rayleigh", "scattering", "atmosphere", "nitrogen", "oxygen"}},
{maxPrompt, []string{"shakespeare", "oppression", "sorrows", "gutenberg", "child", "license", "sonnet", "melancholy"}},
{blueSkyPrompt, blueSkyExpected},
{maxPrompt, []string{"shakespeare", "oppression", "sorrows", "gutenberg", "child", "license", "sonnet", "melancholy", "love", "sorrow", "beauty"}},
}
var gpuPercent int
for _, tc := range testCases {
@ -241,11 +254,12 @@ func TestModelsPerf(t *testing.T) {
}
}
}
// Round the logged prompt count for comparisons across versions/configurations which can vary slightly
fmt.Fprintf(os.Stderr, "MODEL_PERF_HEADER:%s,%s,%s,%s,%s,%s,%s\n",
"MODEL",
"CONTEXT",
"GPU PERCENT",
"PROMPT COUNT",
"APPROX PROMPT COUNT",
"LOAD TIME",
"PROMPT EVAL TPS",
"EVAL TPS",
@ -254,7 +268,7 @@ func TestModelsPerf(t *testing.T) {
model,
numCtx,
gpuPercent,
resp.PromptEvalCount,
(resp.PromptEvalCount/10)*10,
float64(resp.LoadDuration)/1000000000.0,
float64(resp.PromptEvalCount)/(float64(resp.PromptEvalDuration)/1000000000.0),
float64(resp.EvalCount)/(float64(resp.EvalDuration)/1000000000.0),

View File

@ -76,7 +76,7 @@ func TestQuantization(t *testing.T) {
stream := true
genReq := api.GenerateRequest{
Model: newName,
Prompt: "why is the sky blue?",
Prompt: blueSkyPrompt,
KeepAlive: &api.Duration{Duration: 3 * time.Second},
Options: map[string]any{
"seed": 42,
@ -88,14 +88,13 @@ func TestQuantization(t *testing.T) {
// Some smaller quantizations can cause models to have poor quality
// or get stuck in repetition loops, so we stop as soon as we have any matches
anyResp := []string{"rayleigh", "scattering", "day", "sun", "moon", "color", "nitrogen", "oxygen"}
reqCtx, reqCancel := context.WithCancel(ctx)
atLeastOne := false
var buf bytes.Buffer
genfn := func(response api.GenerateResponse) error {
buf.Write([]byte(response.Response))
fullResp := strings.ToLower(buf.String())
for _, resp := range anyResp {
for _, resp := range blueSkyExpected {
if strings.Contains(fullResp, resp) {
atLeastOne = true
t.Log(fullResp)

View File

@ -256,13 +256,28 @@ var (
"snowflake-arctic-embed",
"snowflake-arctic-embed2",
}
blueSkyPrompt = "why is the sky blue? Be brief but factual in your reply"
blueSkyExpected = []string{"rayleigh", "scatter", "atmosphere", "nitrogen", "oxygen", "wavelength", "interact"}
rainbowPrompt = "how do rainbows form? Be brief but factual in your reply"
rainbowFollowups = []string{
"Explain the physics involved in them. Be breif in your reply",
"Explain the chemistry involved in them. Be breif in your reply",
"What are common myths related to them? Be brief in your reply",
"What are common fairytales related to them? Be brief in your reply",
"Can they form if there is no rain? Be breif in your reply",
"Can they form if there are no clouds? Be breif in your reply",
"Do they happen on other planets? Be brief in your reply",
}
rainbowExpected = []string{"water", "droplet", "mist", "glow", "refract", "reflect", "scatter", "wave", "color", "spectrum", "raindrop", "atmosphere", "frequency", "end", "gold", "fortune", "blessing", "prosperity", "magic", "shower", "sky", "shimmer", "light", "storm", "sunny"}
)
func init() {
lifecycle.InitLogging()
custom := os.Getenv("OLLAMA_TEST_SMOL_MODEL")
custom := os.Getenv("OLLAMA_TEST_DEFAULT_MODEL")
if custom != "" {
slog.Info("setting smol test model to " + custom)
slog.Info("setting default test model to " + custom)
smol = custom
}
}
@ -440,6 +455,24 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
t.Fatal(err)
}
}
// Make sure server is online and healthy before returning
listCtx, cancel := context.WithDeadlineCause(
ctx,
time.Now().Add(120*time.Second),
fmt.Errorf("list models took too long"),
)
defer cancel()
models, err := client.ListRunning(listCtx)
if err != nil {
t.Fatal(err)
}
if len(models.Models) > 0 {
names := make([]string, len(models.Models))
for i, m := range models.Models {
names[i] = m.Name
}
slog.Info("currently loaded", "models", names)
}
return client, testEndpoint, func() {
if os.Getenv("OLLAMA_TEST_EXISTING") == "" {
@ -561,7 +594,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
Model: smol,
Prompt: "how do rainbows form? Be brief but factual in your reply",
Prompt: rainbowPrompt,
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
@ -577,11 +610,11 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
},
},
[][]string{
{"sunlight", "scattering", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorbs", "wavelength"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigments", "particles", "iron oxide", "rust", "air", "water", "mixture", "mixing"},
{"water", "droplet", "refracted", "reflect", "color", "spectrum"},
{"sunlight", "scatter", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorb", "wavelength", "water", "molecule"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigment", "particle", "iron oxide", "rust", "air", "water", "wet", "mixture", "mixing", "mineral", "element", "decomposed", "matter", "wavelength"},
rainbowExpected,
{"fourth", "july", "declaration", "independence"},
{"nitrogen", "oxygen", "carbon", "dioxide", "water", "vapor"},
{"nitrogen", "oxygen", "carbon", "dioxide", "water", "vapor", "fluid", "particles", "gas"},
}
}

View File

@ -42,6 +42,7 @@ import (
_ "github.com/ollama/ollama/llama/llama.cpp/common"
_ "github.com/ollama/ollama/llama/llama.cpp/src"
_ "github.com/ollama/ollama/llama/llama.cpp/tools/mtmd"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
@ -62,8 +63,8 @@ func BackendInit() {
C.llama_backend_init()
}
func EnumerateGPUs() []string {
var ids []string
func EnumerateGPUs() []ml.DeviceID {
var ids []ml.DeviceID
for i := range C.ggml_backend_dev_count() {
device := C.ggml_backend_dev_get(i)
@ -71,7 +72,10 @@ func EnumerateGPUs() []string {
if C.ggml_backend_dev_type(device) == C.GGML_BACKEND_DEVICE_TYPE_GPU {
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(device, &props)
ids = append(ids, C.GoString(props.id))
ids = append(ids, ml.DeviceID{
ID: C.GoString(props.id),
Library: C.GoString(props.library),
})
}
}

View File

@ -4,48 +4,38 @@ Date: Fri, 18 Apr 2025 15:58:19 -0700
Subject: [PATCH] graph memory reporting on failure
---
ggml/include/ggml-alloc.h | 6 ++++++
ggml/include/ggml-backend.h | 6 ++++++
ggml/src/ggml-alloc.c | 38 +++++++++++++++++++++++++++++++++----
ggml/src/ggml-backend.cpp | 10 ++++++++++
4 files changed, 56 insertions(+), 4 deletions(-)
ggml/include/ggml-alloc.h | 1 +
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-alloc.c | 36 ++++++++++++++++++++++++++++++++----
ggml/src/ggml-backend.cpp | 7 +++++++
4 files changed, 41 insertions(+), 4 deletions(-)
diff --git a/ggml/include/ggml-alloc.h b/ggml/include/ggml-alloc.h
index 2cb150fd..781b1e10 100644
index 2cb150fd2..7ab3f0192 100644
--- a/ggml/include/ggml-alloc.h
+++ b/ggml/include/ggml-alloc.h
@@ -66,6 +66,12 @@ GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph
@@ -65,6 +65,7 @@ GGML_API bool ggml_gallocr_reserve_n(
GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
+GGML_API size_t ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
+struct ggml_allocr_buffer_status {
+ size_t size;
+ bool allocated;
+};
+GGML_API struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
+
// Utils
// Create a buffer and allocate all the tensors in a ggml_context
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index a2977ea2..8a91b381 100644
index a2977ea2e..e8cf30841 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -304,6 +304,12 @@ extern "C" {
@@ -303,6 +303,7 @@ extern "C" {
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+ GGML_API size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+ struct ggml_backend_buffer_status {
+ size_t size;
+ bool allocated;
+ };
+ GGML_API struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c
index 8b6e6028..41c8c4a2 100644
index 8b6e60283..b58bd671d 100644
--- a/ggml/src/ggml-alloc.c
+++ b/ggml/src/ggml-alloc.c
@@ -350,6 +350,7 @@ struct node_alloc {
@ -108,11 +98,11 @@ index 8b6e6028..41c8c4a2 100644
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
@@ -920,6 +932,24 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
@@ -920,6 +932,22 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
}
+struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
+size_t ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
+ GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
+
+ for (int i = 0; i < buffer_id; i++) {
@ -121,34 +111,29 @@ index 8b6e6028..41c8c4a2 100644
+ // (See above.) However, we need a different check because multiple buffers might be NULL in our
+ // case and we still want to know the attempted size.
+
+ struct ggml_allocr_buffer_status status = {0, true};
+ return status;
+ return 0;
+ }
+ }
+
+ struct ggml_allocr_buffer_status status = {galloc->buffer_sizes[buffer_id], galloc->buffers[buffer_id] != NULL};
+ return status;
+ return galloc->buffer_sizes[buffer_id];
+}
+
// utils
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index 97f47abd..eded0291 100644
index 97f47abd2..d02a40e60 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -1631,6 +1631,16 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
@@ -1631,6 +1631,13 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
+struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
+size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+
+ struct ggml_allocr_buffer_status allocr_status = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+ struct ggml_backend_buffer_status status = {allocr_status.size, allocr_status.allocated};
+
+ return status;
+ return ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+}
+
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {

View File

@ -3,35 +3,45 @@ From: Jesse Gross <jesse@ollama.com>
Date: Wed, 23 Jul 2025 11:58:49 -0700
Subject: [PATCH] ggml: No-alloc mode
Callers can set a backend buffer type to be no-alloc, meaning that
Callers can set a scheduler to be no-alloc, meaning that
it does not allocate memory for tensors or operations. This can
be used for calculating memory requirements. Tensors and graphs
must be recreated with no-alloc set to false before loading data.
Defaults to false for newly created backend buffer types.
---
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-backend-impl.h | 2 ++
ggml/src/ggml-backend.cpp | 19 ++++++++++++++++++-
3 files changed, 21 insertions(+), 1 deletion(-)
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-backend-impl.h | 16 +++
ggml/src/ggml-backend.cpp | 72 ++++++++++-
ggml/src/ggml-cuda/common.cuh | 48 ++++++-
ggml/src/ggml-cuda/ggml-cuda.cu | 217 ++++++++++++++++++++++++++------
5 files changed, 310 insertions(+), 44 deletions(-)
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index 9424394e..b602a7c7 100644
index 2773cc310..ae94887dd 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -35,6 +35,7 @@ extern "C" {
//
@@ -291,6 +291,7 @@ extern "C" {
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
+ GGML_API void ggml_backend_buft_set_alloc (ggml_backend_buffer_type_t buft, bool alloc);
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload);
+ GGML_API ggml_backend_sched_t ggml_backend_sched_new_ext(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload, bool alloc_buffers);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
diff --git a/ggml/src/ggml-backend-impl.h b/ggml/src/ggml-backend-impl.h
index c36c12d6..81749a5a 100644
index c36c12d65..369e9e25a 100644
--- a/ggml/src/ggml-backend-impl.h
+++ b/ggml/src/ggml-backend-impl.h
@@ -32,6 +32,7 @@ extern "C" {
@@ -26,12 +26,17 @@ extern "C" {
size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
// (optional) check if tensor data is in host memory and uses standard ggml tensor layout (defaults to false)
bool (*is_host) (ggml_backend_buffer_type_t buft);
+
+ // (optional) returns a dummy buffer that is equivalent to one created by alloc_buffer but without actually being backed
+ // by memory
+ ggml_backend_buffer_t (*noalloc_buffer)(ggml_backend_buffer_type_t buft, size_t size);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
ggml_backend_dev_t device;
void * context;
@ -39,7 +49,7 @@ index c36c12d6..81749a5a 100644
};
//
@@ -63,6 +64,7 @@ extern "C" {
@@ -63,6 +68,7 @@ extern "C" {
void * context;
size_t size;
enum ggml_backend_buffer_usage usage;
@ -47,26 +57,40 @@ index c36c12d6..81749a5a 100644
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
@@ -114,6 +120,16 @@ extern "C" {
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
// wait for an event on on a different stream
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
+
+ // (optional) reserves intermediate buffers needed for the compution
+ // if alloc is true, memory is actually allocated, otherwise the required amount is just returned by buffer_size
+ enum ggml_status (*graph_reserve) (ggml_backend_t backend, struct ggml_cgraph * cgraph, bool alloc);
+
+ // (optional) returns the memory needed after calling graph_reserve
+ size_t (*buffer_size) (ggml_backend_t backend);
+
+ // (optional) frees memory from intermediate buffers that was allocated either by graph_compute or graph_reserve
+ void (*reset) (ggml_backend_t backend);
};
struct ggml_backend {
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index eded0291..05a842ed 100644
index d02a40e60..6b4dee4c7 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -35,12 +35,22 @@ const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name(buft);
}
+void ggml_backend_buft_set_alloc(ggml_backend_buffer_type_t buft, bool alloc) {
+ buft->no_alloc = !alloc;
+}
+
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
if (size == 0) {
// return a dummy buffer for zero-sized allocations
@@ -41,6 +41,19 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
return ggml_backend_buffer_init(buft, {}, NULL, 0);
}
+ if (buft->no_alloc) {
+ ggml_backend_buffer_t buf = ggml_backend_buffer_init(buft, {}, NULL, size);
+ ggml_backend_buffer_t buf;
+
+ if (buft->iface.noalloc_buffer != NULL) {
+ buf = buft->iface.noalloc_buffer(buft, size);
+ } else {
+ buf = ggml_backend_buffer_init(buft, {}, NULL, size);
+ }
+
+ buf->no_alloc = true;
+ return buf;
+ }
@ -74,7 +98,7 @@ index eded0291..05a842ed 100644
return buft->iface.alloc_buffer(buft, size);
}
@@ -89,7 +99,8 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
@@ -89,7 +102,8 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
/* .buft = */ buft,
/* .context = */ context,
/* .size = */ size,
@ -84,7 +108,7 @@ index eded0291..05a842ed 100644
};
return buffer;
@@ -119,6 +130,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -119,6 +133,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return NULL;
}
@ -97,3 +121,532 @@ index eded0291..05a842ed 100644
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
@@ -663,6 +683,12 @@ struct ggml_backend_sched {
bool op_offload;
int debug;
+
+ // allocate buffers on attached ggml_backend_buffer_type_t's and during reservation
+ // if false, dummy buffers are used for faster memory sizing calculations
+ // the scheduler needs to be recreated with allocated buffers before it can be used
+ // for computation
+ bool alloc_buffers;
};
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
@@ -1449,6 +1475,17 @@ ggml_backend_sched_t ggml_backend_sched_new(
size_t graph_size,
bool parallel,
bool op_offload) {
+ return ggml_backend_sched_new_ext(backends, bufts, n_backends, graph_size, parallel, op_offload, true);
+ }
+
+ggml_backend_sched_t ggml_backend_sched_new_ext(
+ ggml_backend_t * backends,
+ ggml_backend_buffer_type_t * bufts,
+ int n_backends,
+ size_t graph_size,
+ bool parallel,
+ bool op_offload,
+ bool alloc_buffers) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
@@ -1490,10 +1527,13 @@ ggml_backend_sched_t ggml_backend_sched_new(
sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
}
}
+
+ sched->bufts[b]->no_alloc = !alloc_buffers;
}
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
sched->op_offload = op_offload;
+ sched->alloc_buffers = alloc_buffers;
ggml_backend_sched_reset(sched);
@@ -1508,6 +1548,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
for (int c = 0; c < sched->n_copies; c++) {
ggml_backend_event_free(sched->events[b][c]);
}
+
+ if (sched->backends[b]->iface.reset != NULL) {
+ sched->backends[b]->iface.reset(sched->backends[b]);
+ }
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
@@ -1547,6 +1591,24 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
return false;
}
+ if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
+ return false;
+ }
+
+ struct ggml_backend_sched_split * splits = sched->splits;
+ for (int i = 0; i < sched->n_splits; i++) {
+ struct ggml_backend_sched_split * split = &splits[i];
+ int split_backend_id = split->backend_id;
+ ggml_backend_t split_backend = sched->backends[split_backend_id];
+
+ if (split_backend->iface.graph_reserve != NULL) {
+ enum ggml_status ec = split_backend->iface.graph_reserve(split_backend, &split->graph, sched->alloc_buffers);
+ if (ec != GGML_STATUS_SUCCESS) {
+ return false;
+ }
+ }
+ }
+
ggml_backend_sched_reset(sched);
return true;
@@ -1635,7 +1697,13 @@ size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched,
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
- return ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+ size_t size = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+
+ if (backend->iface.buffer_size != NULL) {
+ size += backend->iface.buffer_size(backend);
+ }
+
+ return size;
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
index 2e5d48797..b915ee1b8 100644
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
@@ -35,6 +35,31 @@
#include "vendors/cuda.h"
#endif // defined(GGML_USE_HIP)
+extern bool reserving_graph;
+
+// If we are reserving the graph, pointers might be invalid and will fail if cudaMemcpyAsync tries to validate them.
+// However, since we don't actually expect a result, we don't need to actually do the memcpy.
+static cudaError_t cudaMemcpyAsyncReserve ( void* dst, const void* src, size_t count, cudaMemcpyKind kind, cudaStream_t stream = 0 ) {
+ if (!reserving_graph) {
+ return cudaMemcpyAsync(dst, src, count, kind, stream);
+ } else {
+ return cudaSuccess;
+ }
+}
+
+static cudaError_t cudaMemcpy2DAsyncReserve ( void* dst, size_t dpitch, const void* src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream = 0 ) {
+ if (!reserving_graph) {
+ return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, kind, stream);
+ } else {
+ return cudaSuccess;
+ }
+}
+
+#undef cudaMemcpyAsync
+#define cudaMemcpyAsync cudaMemcpyAsyncReserve
+#undef cudaMemcpy2DAsync
+#define cudaMemcpy2DAsync cudaMemcpy2DAsyncReserve
+
#define STRINGIZE_IMPL(...) #__VA_ARGS__
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
@@ -771,6 +796,9 @@ struct ggml_cuda_pool {
virtual void * alloc(size_t size, size_t * actual_size) = 0;
virtual void free(void * ptr, size_t size) = 0;
+
+ virtual bool alloc_memory() = 0;
+ virtual size_t alloc_size() = 0;
};
template<typename T>
@@ -914,11 +942,11 @@ struct ggml_backend_cuda_context {
// pool
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
- static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
+ static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device, bool alloc);
ggml_cuda_pool & pool(int device) {
if (pools[device] == nullptr) {
- pools[device] = new_pool_for_device(device);
+ pools[device] = new_pool_for_device(device, true);
}
return *pools[device];
}
@@ -926,4 +954,20 @@ struct ggml_backend_cuda_context {
ggml_cuda_pool & pool() {
return pool(device);
}
+
+ void pool_set_alloc(bool alloc) {
+ GGML_ASSERT(pools[device] == nullptr || pools[device]->alloc_memory() == alloc);
+
+ if (pools[device] == nullptr) {
+ pools[device] = new_pool_for_device(device, alloc);
+ }
+ }
+
+ size_t pool_get_alloc_size() {
+ if (pools[device] == nullptr) {
+ return 0;
+ }
+
+ return pools[device]->alloc_size();
+ }
};
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index c7f9dc3a5..d5abe09e0 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -350,6 +350,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
// #define DEBUG_CUDA_MALLOC
+#define CUDA_ALIGNMENT 128
+
// buffer pool for cuda (legacy)
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
static const int MAX_BUFFERS = 256;
@@ -362,9 +364,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
size_t pool_size = 0;
+ bool allocate = true;
+ size_t last_alloc = 0;
- explicit ggml_cuda_pool_leg(int device) :
- device(device) {
+ explicit ggml_cuda_pool_leg(int device, bool alloc) :
+ device(device),
+ allocate(alloc) {
}
~ggml_cuda_pool_leg() {
@@ -372,7 +377,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer & b = buffer_pool[i];
if (b.ptr != nullptr) {
- CUDA_CHECK(cudaFree(b.ptr));
+ if (allocate) {
+ CUDA_CHECK(cudaFree(b.ptr));
+ }
pool_size -= b.size;
}
}
@@ -420,8 +427,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
void * ptr;
size_t look_ahead_size = (size_t) (1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- ggml_cuda_set_device(device);
- CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
+ if (allocate) {
+ ggml_cuda_set_device(device);
+ if (ggml_cuda_device_malloc(&ptr, look_ahead_size, device) != cudaSuccess) {
+ last_alloc = look_ahead_size;
+ throw std::bad_alloc();
+ }
+ } else {
+ ptr = (void *)CUDA_ALIGNMENT;
+ }
*actual_size = look_ahead_size;
pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC
@@ -441,10 +455,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
}
}
GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaFree(ptr));
+ if (allocate) {
+ ggml_cuda_set_device(device);
+ CUDA_CHECK(cudaFree(ptr));
+ }
pool_size -= size;
}
+
+ bool alloc_memory() override {
+ return allocate;
+ }
+
+ size_t alloc_size() override {
+ return pool_size + last_alloc;
+ }
};
// pool with virtual memory
@@ -456,18 +480,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
CUdeviceptr pool_addr = 0;
size_t pool_used = 0;
size_t pool_size = 0;
+ bool allocate = true;
+ size_t last_alloc = 0;
size_t granularity;
#if defined(GGML_USE_HIP)
std::vector<std::pair<CUdeviceptr, size_t>> mappings;
#endif
- explicit ggml_cuda_pool_vmm(int device) :
+ explicit ggml_cuda_pool_vmm(int device, bool alloc) :
device(device),
- granularity(ggml_cuda_info().devices[device].vmm_granularity) {
+ granularity(ggml_cuda_info().devices[device].vmm_granularity),
+ allocate(alloc) {
+ if (!allocate) {
+ pool_addr = (CUdeviceptr)CUDA_ALIGNMENT;
+ }
}
~ggml_cuda_pool_vmm() {
- if (pool_addr != 0) {
+ if (pool_addr != 0 && allocate) {
#if defined(GGML_USE_HIP)
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
@@ -494,35 +524,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
- // allocate more physical memory
- CUmemAllocationProp prop = {};
- prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- prop.location.id = device;
- CUmemGenericAllocationHandle handle;
- CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
-
- // reserve virtual address space (if not already reserved)
- if (pool_addr == 0) {
- CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
- }
+ if (allocate) {
+ // allocate more physical memory
+ CUmemAllocationProp prop = {};
+ prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
+ prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+ prop.location.id = device;
+ CUmemGenericAllocationHandle handle;
+ if (cuMemCreate(&handle, reserve_size, &prop, 0) != CUDA_SUCCESS) {
+ last_alloc = reserve_size;
+ throw std::bad_alloc();
+ }
- // map at the end of the pool
- CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
- CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0));
-#if defined(GGML_USE_HIP)
- mappings.push_back({start_ptr, reserve_size});
-#endif
+ // reserve virtual address space (if not already reserved)
+ if (pool_addr == 0) {
+ CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
+ }
- // the memory allocation handle is no longer needed after mapping
- CU_CHECK(cuMemRelease(handle));
+ // map at the end of the pool
+ CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
+ if (cuMemMap(start_ptr, reserve_size, 0, handle, 0) != CUDA_SUCCESS) {
+ last_alloc = reserve_size;
+ CU_CHECK(cuMemRelease(handle));
+ throw std::bad_alloc();
+ }
+
+ // the memory allocation handle is no longer needed after mapping
+ CU_CHECK(cuMemRelease(handle));
+
+ // set access
+ CUmemAccessDesc access = {};
+ access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+ access.location.id = device;
+ access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
+ if (cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1) != CUDA_SUCCESS) {
+ CU_CHECK(cuMemUnmap(start_ptr, reserve_size));
+ last_alloc = reserve_size;
+ throw std::bad_alloc();
+ }
- // set access
- CUmemAccessDesc access = {};
- access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- access.location.id = device;
- access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
- CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1));
+ #if defined(GGML_USE_HIP)
+ mappings.push_back({start_ptr, reserve_size});
+ #endif
+ }
// add to the pool
pool_size += reserve_size;
@@ -555,16 +599,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
// all deallocations must be in reverse order of the allocations
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
}
+
+ bool alloc_memory() override {
+ return allocate;
+ }
+
+ size_t alloc_size() override {
+ return pool_size + last_alloc;
+ }
};
#endif // defined(GGML_USE_VMM)
-std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
+std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device, bool alloc) {
#if defined(GGML_USE_VMM)
if (ggml_cuda_info().devices[device].vmm) {
- return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
+ return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device, alloc));
}
#endif // defined(GGML_USE_VMM)
- return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
+ return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device, alloc));
}
// destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error
@@ -748,11 +800,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
}
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
+ return CUDA_ALIGNMENT;
GGML_UNUSED(buft);
}
+static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_noalloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+
+ void * dev_ptr = (void *)ggml_backend_cuda_buffer_type_get_alignment(buft);
+ ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
+
+ return ggml_backend_buffer_init(buft, {}, ctx, size);
+}
+
static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
@@ -776,6 +837,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
+ /* .noalloc_buffer = */ ggml_backend_cuda_buffer_type_noalloc_buffer,
};
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
@@ -2936,6 +2998,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
+
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
@@ -2951,6 +3014,11 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
continue;
}
+ // When reserving, we are forcing CUDA graphs but this operation is not graph-safe so we need to skip it
+ if (reserving_graph && node->op == GGML_OP_MUL_MAT_ID && node->ne[2] != 1) {
+ continue;
+ }
+
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion) {
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
@@ -3022,6 +3090,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+ cuda_ctx->pool_set_alloc(true);
ggml_cuda_set_device(cuda_ctx->device);
@@ -3101,6 +3170,71 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
return GGML_STATUS_SUCCESS;
}
+// This is used to skip operations that are not graph safe during the reservation process.
+bool reserving_graph = false;
+
+static enum ggml_status ggml_backend_cuda_graph_reserve(ggml_backend_t backend, ggml_cgraph * cgraph, bool alloc) {
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+ cuda_ctx->pool_set_alloc(alloc);
+
+ #ifdef USE_CUDA_GRAPH
+ if (cuda_ctx->cuda_graph == nullptr) {
+ cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
+ }
+ #endif
+
+ ggml_cuda_set_device(cuda_ctx->device);
+
+ {
+ std::lock_guard<std::mutex> lock(ggml_cuda_lock);
+ ggml_cuda_lock_counter.fetch_add(1, std::memory_order_relaxed);
+ }
+
+ reserving_graph = true;
+
+ // Create CuBLAS handles early to avoid synchronous allocations during graph capture.
+ cuda_ctx->cublas_handle();
+
+ CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
+
+ enum ggml_status result = GGML_STATUS_SUCCESS;
+
+ try {
+ bool use_cuda_graph = false;
+ bool cuda_graph_update_required = false;
+ bool graph_evaluated_or_captured = false;
+
+ evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
+ } catch (const std::exception &e) {
+ result = GGML_STATUS_FAILED;
+ }
+
+ cudaGraph_t graph;
+ CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &graph));
+ CUDA_CHECK(cudaGraphDestroy(graph));
+
+ reserving_graph = false;
+
+ {
+ std::lock_guard<std::mutex> lock(ggml_cuda_lock);
+ if (ggml_cuda_lock_counter.fetch_sub(1, std::memory_order_relaxed) == 1) {
+ ggml_cuda_lock_cv.notify_all();
+ }
+ }
+
+ return result;
+}
+
+static size_t ggml_backend_cuda_buffer_size(ggml_backend_t backend) {
+ ggml_backend_cuda_context * ctx = (ggml_backend_cuda_context *)backend->context;
+ return ctx->pool_get_alloc_size();
+}
+
+static void ggml_backend_cuda_reset(ggml_backend_t backend) {
+ ggml_backend_cuda_context * ctx = (ggml_backend_cuda_context *)backend->context;
+ ctx->pools[ctx->device] = NULL;
+}
+
static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
@@ -3140,6 +3274,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
+ /* .graph_reserve = */ ggml_backend_cuda_graph_reserve,
+ /* .buffer_size = */ ggml_backend_cuda_buffer_size,
+ /* .reset = */ ggml_backend_cuda_reset,
};
static ggml_guid_t ggml_backend_cuda_guid() {

View File

@ -0,0 +1,876 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Tue, 26 Aug 2025 12:48:29 -0700
Subject: [PATCH] GPU discovery enhancements
Expose more information about the devices through backend props, and leverage
management libraries for more accurate VRAM usage reporting if available.
---
ggml/include/ggml-backend.h | 9 +
ggml/src/CMakeLists.txt | 2 +
ggml/src/ggml-cuda/ggml-cuda.cu | 75 +++++-
ggml/src/ggml-cuda/vendors/hip.h | 1 +
ggml/src/ggml-impl.h | 8 +
ggml/src/ggml-metal/ggml-metal.m | 2 +
ggml/src/mem_hip.cpp | 449 +++++++++++++++++++++++++++++++
ggml/src/mem_nvml.cpp | 172 ++++++++++++
8 files changed, 717 insertions(+), 1 deletion(-)
create mode 100644 ggml/src/mem_hip.cpp
create mode 100644 ggml/src/mem_nvml.cpp
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index fda5ceb24..7c2d86703 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -158,6 +158,15 @@ extern "C" {
size_t memory_total;
enum ggml_backend_dev_type type;
struct ggml_backend_dev_caps caps;
+ int driver_major;
+ int driver_minor;
+ int compute_major;
+ int compute_minor;
+ int integrated;
+ int pci_bus_id;
+ int pci_device_id;
+ int pci_domain_id;
+ const char *library;
};
GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index 5158acd6a..3a428a22d 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -203,6 +203,8 @@ add_library(ggml-base
ggml-threading.h
ggml-quants.c
ggml-quants.h
+ mem_hip.cpp
+ mem_nvml.cpp
gguf.cpp)
target_include_directories(ggml-base PRIVATE .)
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index e43fde523..14baf0fb1 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -279,6 +279,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
+#if defined(GGML_USE_HIP)
+ if (std::getenv("GGML_CUDA_INIT") != NULL) {
+ GGML_LOG_INFO("%s: initializing rocBLAS on device %d\n", __func__, id);
+ CUDA_CHECK(cudaSetDevice(id));
+ // rocblas_initialize will SIGABRT if the GPU isn't supported
+ rocblas_initialize();
+ GGML_LOG_INFO("%s: rocBLAS initialized on device %d\n", __func__, id);
+ }
+#endif
+
#if defined(GGML_USE_VMM)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
@@ -332,9 +342,15 @@ static ggml_cuda_device_info ggml_cuda_init() {
#else
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
+#ifdef __CUDA_ARCH_LIST__
+ if (std::getenv("GGML_CUDA_INIT") != NULL) {
+ GGML_ASSERT(ggml_cuda_has_arch(info.devices[id].cc) && "ggml was not compiled with support for this arch");
+ }
+#endif // defined(__CUDA_ARCH_LIST__)
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
ggml_cuda_parse_uuid(prop, id).c_str());
+
#endif // defined(GGML_USE_HIP)
}
@@ -3215,6 +3231,14 @@ struct ggml_backend_cuda_device_context {
std::string name;
std::string description;
std::string id;
+ int major;
+ int minor;
+ int driver_major;
+ int driver_minor;
+ int integrated;
+ int pci_bus_id;
+ int pci_device_id;
+ int pci_domain_id;
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@@ -3235,6 +3259,28 @@ static const char * ggml_backend_cuda_device_get_id(ggml_backend_dev_t dev) {
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_cuda_set_device(ctx->device);
+
+#if defined(GGML_USE_HIP)
+ if (ggml_hip_mgmt_init() == 0) {
+ int status = ggml_hip_get_device_memory(ctx->pci_bus_id, ctx->pci_device_id, free, total);
+ if (status == 0) {
+ GGML_LOG_DEBUG("%s utilizing ADLX memory reporting free: %zu total: %zu\n", __func__, *free, *total);
+ ggml_hip_mgmt_release();
+ return;
+ }
+ ggml_hip_mgmt_release();
+ }
+#else
+ if (ggml_nvml_init() == 0) {
+ int status = ggml_nvml_get_device_memory(ctx->id.c_str(), free, total);
+ if (status == 0) {
+ GGML_LOG_DEBUG("%s utilizing NVML memory reporting free: %zu total: %zu\n", __func__, *free, *total);
+ ggml_nvml_release();
+ return;
+ }
+ ggml_nvml_release();
+ }
+#endif
CUDA_CHECK(cudaMemGetInfo(free, total));
}
@@ -3243,6 +3289,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
+#define GGML_HIP_NAME "HIP"
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_cuda_device_get_name(dev);
props->description = ggml_backend_cuda_device_get_description(dev);
@@ -3253,6 +3300,23 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
// If you need the memory data, call ggml_backend_dev_memory() explicitly.
props->memory_total = props->memory_free = 0;
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+#if defined(GGML_USE_HIP)
+ int cc = ggml_cuda_info().devices[ctx->device].cc - GGML_CUDA_CC_OFFSET_AMD;
+ props->compute_major = cc / 0x100;
+ props->compute_minor = cc - (props->compute_major * 0x100);
+#else
+ props->compute_major = ctx->major;
+ props->compute_minor = ctx->minor;
+#endif
+ props->driver_major = ctx->driver_major;
+ props->driver_minor = ctx->driver_minor;
+ props->integrated = ctx->integrated;
+ props->pci_bus_id = ctx->pci_bus_id;
+ props->pci_device_id = ctx->pci_device_id;
+ props->pci_domain_id = ctx->pci_domain_id;
+ props->library = GGML_CUDA_NAME;
+
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
bool events = false;
@@ -3843,6 +3907,8 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
+ int driverVersion = 0;
+ CUDA_CHECK(cudaDriverGetVersion(&driverVersion));
for (int i = 0; i < ggml_cuda_info().device_count; i++) {
ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
@@ -3853,7 +3919,14 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
dev_ctx->id = ggml_cuda_parse_uuid(prop, i);
-
+ dev_ctx->major = prop.major;
+ dev_ctx->minor = prop.minor;
+ dev_ctx->driver_major = driverVersion / 1000;
+ dev_ctx->driver_minor = (driverVersion - (dev_ctx->driver_major * 1000)) / 10;
+ dev_ctx->integrated = prop.integrated;
+ dev_ctx->pci_bus_id = prop.pciBusID;
+ dev_ctx->pci_device_id = prop.pciDeviceID;
+ dev_ctx->pci_domain_id = prop.pciDomainID;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,
/* .reg = */ &reg,
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
index cf22e60d2..957a795f2 100644
--- a/ggml/src/ggml-cuda/vendors/hip.h
+++ b/ggml/src/ggml-cuda/vendors/hip.h
@@ -42,6 +42,7 @@
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceReset hipDeviceReset
#define cudaDeviceSynchronize hipDeviceSynchronize
+#define cudaDriverGetVersion hipDriverGetVersion
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
diff --git a/ggml/src/ggml-impl.h b/ggml/src/ggml-impl.h
index 19a7adb2d..b9b102a5e 100644
--- a/ggml/src/ggml-impl.h
+++ b/ggml/src/ggml-impl.h
@@ -602,6 +602,14 @@ static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx
return true;
}
+// Management libraries for fetching more accurate free VRAM data
+GGML_API int ggml_nvml_init();
+GGML_API int ggml_nvml_get_device_memory(const char *uuid, size_t *free, size_t *total);
+GGML_API void ggml_nvml_release();
+GGML_API int ggml_hip_mgmt_init();
+GGML_API int ggml_hip_get_device_memory(int pci_bus_id, int pci_device_id, size_t *free, size_t *total);
+GGML_API void ggml_hip_mgmt_release();
+
#ifdef __cplusplus
}
#endif
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index e4c31268f..ec6b385ba 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -6523,12 +6523,14 @@ static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backen
GGML_UNUSED(dev);
}
+#define GGML_METAL_NAME "Metal"
static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_metal_device_get_name(dev);
props->description = ggml_backend_metal_device_get_description(dev);
props->id = "0";
props->type = ggml_backend_metal_device_get_type(dev);
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
+ props->library = GGML_METAL_NAME;
props->caps = (struct ggml_backend_dev_caps) {
/* .async = */ false,
/* .host_buffer = */ false,
diff --git a/ggml/src/mem_hip.cpp b/ggml/src/mem_hip.cpp
new file mode 100644
index 000000000..8ef19b8cf
--- /dev/null
+++ b/ggml/src/mem_hip.cpp
@@ -0,0 +1,449 @@
+#include "ggml.h"
+
+#ifdef _WIN32
+// AMD Device Library eXtra (ADLX)
+//
+// https://github.com/GPUOpen-LibrariesAndSDKs/ADLX
+//
+// This Windows-only library provides accurate VRAM reporting for AMD GPUs.
+// The runtime DLL is installed with every AMD Driver on Windows, however
+// the SDK isn't a part of the HIP SDK packaging. As such, we avoid including
+// the headers from the SDK to simplify building from source.
+//
+// ADLX relies heavily on function pointer tables.
+// Only the minimal set of types are defined below to facilitate
+// finding the target AMD GPU(s) and querying their current VRAM usage
+// Unused function parameters are commented out to avoid unnecessary type
+// definitions.
+
+#include "ggml-impl.h"
+#include <filesystem>
+#include <mutex>
+
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+# define NOMINMAX
+#endif
+#include <windows.h>
+
+namespace fs = std::filesystem;
+
+#include <stdio.h>
+#include <stdint.h>
+
+// Begin minimal ADLX definitions - derived from tag v1.0 (Dec 2022)
+typedef uint64_t adlx_uint64;
+typedef uint32_t adlx_uint32;
+typedef int32_t adlx_int32;
+typedef adlx_int32 adlx_int;
+typedef adlx_uint32 adlx_uint;
+typedef long adlx_long;
+typedef uint8_t adlx_uint8;
+typedef enum
+{
+ ADLX_OK = 0, /**< @ENG_START_DOX This result indicates success. @ENG_END_DOX */
+ ADLX_ALREADY_ENABLED, /**< @ENG_START_DOX This result indicates that the asked action is already enabled. @ENG_END_DOX */
+ ADLX_ALREADY_INITIALIZED, /**< @ENG_START_DOX This result indicates that ADLX has a unspecified type of initialization. @ENG_END_DOX */
+ ADLX_FAIL, /**< @ENG_START_DOX This result indicates an unspecified failure. @ENG_END_DOX */
+ ADLX_INVALID_ARGS, /**< @ENG_START_DOX This result indicates that the arguments are invalid. @ENG_END_DOX */
+ ADLX_BAD_VER, /**< @ENG_START_DOX This result indicates that the asked version is incompatible with the current version. @ENG_END_DOX */
+ ADLX_UNKNOWN_INTERFACE, /**< @ENG_START_DOX This result indicates that an unknown interface was asked. @ENG_END_DOX */
+ ADLX_TERMINATED, /**< @ENG_START_DOX This result indicates that the calls were made in an interface after ADLX was terminated. @ENG_END_DOX */
+ ADLX_ADL_INIT_ERROR, /**< @ENG_START_DOX This result indicates that the ADL initialization failed. @ENG_END_DOX */
+ ADLX_NOT_FOUND, /**< @ENG_START_DOX This result indicates that the item is not found. @ENG_END_DOX */
+ ADLX_INVALID_OBJECT, /**< @ENG_START_DOX This result indicates that the method was called into an invalid object. @ENG_END_DOX */
+ ADLX_ORPHAN_OBJECTS, /**< @ENG_START_DOX This result indicates that ADLX was terminated with outstanding ADLX objects. Any interface obtained from ADLX points to invalid memory and calls in their methods will result in unexpected behavior. @ENG_END_DOX */
+ ADLX_NOT_SUPPORTED, /**< @ENG_START_DOX This result indicates that the asked feature is not supported. @ENG_END_DOX */
+ ADLX_PENDING_OPERATION, /**< @ENG_START_DOX This result indicates a failure due to an operation currently in progress. @ENG_END_DOX */
+ ADLX_GPU_INACTIVE /**< @ENG_START_DOX This result indicates that the GPU is inactive. @ENG_END_DOX */
+} ADLX_RESULT;
+#define ADLX_SUCCEEDED(x) (ADLX_OK == (x) || ADLX_ALREADY_ENABLED == (x) || ADLX_ALREADY_INITIALIZED == (x))
+#define ADLX_FAILED(x) (ADLX_OK != (x) && ADLX_ALREADY_ENABLED != (x) && ADLX_ALREADY_INITIALIZED != (x))
+#define ADLX_VER_MAJOR 1
+#define ADLX_VER_MINOR 0
+#define ADLX_VER_RELEASE 5
+#define ADLX_VER_BUILD_NUM 30
+#define ADLX_MAKE_FULL_VER(VERSION_MAJOR, VERSION_MINOR, VERSION_RELEASE, VERSION_BUILD_NUM) ( ((adlx_uint64)(VERSION_MAJOR) << 48ull) | ((adlx_uint64)(VERSION_MINOR) << 32ull) | ((adlx_uint64)(VERSION_RELEASE) << 16ull) | (adlx_uint64)(VERSION_BUILD_NUM))
+#define ADLX_FULL_VERSION ADLX_MAKE_FULL_VER(ADLX_VER_MAJOR, ADLX_VER_MINOR, ADLX_VER_RELEASE, ADLX_VER_BUILD_NUM)
+#define ADLX_CORE_LINK __declspec(dllexport)
+#define ADLX_STD_CALL __stdcall
+#define ADLX_CDECL_CALL __cdecl
+#define ADLX_FAST_CALL __fastcall
+#define ADLX_INLINE __inline
+#define ADLX_FORCEINLINE __forceinline
+#define ADLX_NO_VTABLE __declspec(novtable)
+
+#if defined(__cplusplus)
+typedef bool adlx_bool;
+#else
+typedef adlx_uint8 adlx_bool;
+#define true 1
+#define false 0
+#endif
+
+typedef struct IADLXSystem IADLXSystem;
+typedef struct IADLXGPUList IADLXGPUList;
+typedef struct IADLXGPU IADLXGPU;
+typedef struct IADLXInterface IADLXInterface;
+typedef struct IADLXPerformanceMonitoringServices IADLXPerformanceMonitoringServices;
+typedef struct IADLXGPUMetrics IADLXGPUMetrics;
+typedef struct IADLXGPUMetricsSupport IADLXGPUMetricsSupport;
+
+typedef struct IADLXSystemVtbl
+{
+ // IADLXSystem interface
+ ADLX_RESULT (ADLX_STD_CALL *GetHybridGraphicsType)(/* IADLXSystem* pThis, ADLX_HG_TYPE* hgType */);
+ ADLX_RESULT (ADLX_STD_CALL *GetGPUs)(IADLXSystem* pThis, IADLXGPUList** ppGPUs); // Used
+ ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXSystem* pThis, const wchar_t* interfaceId, void** ppInterface */);
+ ADLX_RESULT (ADLX_STD_CALL *GetDisplaysServices)(/* IADLXSystem* pThis, IADLXDisplayServices** ppDispServices */);
+ ADLX_RESULT (ADLX_STD_CALL *GetDesktopsServices)(/* IADLXSystem* pThis, IADLXDesktopServices** ppDeskServices */);
+ ADLX_RESULT (ADLX_STD_CALL *GetGPUsChangedHandling)(/* IADLXSystem* pThis, IADLXGPUsChangedHandling** ppGPUsChangedHandling */);
+ ADLX_RESULT (ADLX_STD_CALL *EnableLog)(/* IADLXSystem* pThis, ADLX_LOG_DESTINATION mode, ADLX_LOG_SEVERITY severity, IADLXLog* pLogger, const wchar_t* fileName */);
+ ADLX_RESULT (ADLX_STD_CALL *Get3DSettingsServices)(/* IADLXSystem* pThis, IADLX3DSettingsServices** pp3DSettingsServices */);
+ ADLX_RESULT (ADLX_STD_CALL *GetGPUTuningServices)(/* IADLXSystem* pThis, IADLXGPUTuningServices** ppGPUTuningServices */);
+ ADLX_RESULT (ADLX_STD_CALL *GetPerformanceMonitoringServices)(IADLXSystem* pThis, IADLXPerformanceMonitoringServices** ppPerformanceMonitoringServices); // Used
+ ADLX_RESULT (ADLX_STD_CALL *TotalSystemRAM)(/* IADLXSystem* pThis, adlx_uint* ramMB */);
+ ADLX_RESULT (ADLX_STD_CALL *GetI2C)(/* IADLXSystem* pThis, IADLXGPU* pGPU, IADLXI2C** ppI2C */);
+} IADLXSystemVtbl;
+struct IADLXSystem { const IADLXSystemVtbl *pVtbl; };
+
+typedef struct IADLXGPUVtbl
+{
+ //IADLXInterface
+ adlx_long (ADLX_STD_CALL *Acquire)(/* IADLXGPU* pThis */);
+ adlx_long (ADLX_STD_CALL *Release)(IADLXGPU* pThis); // Used
+ ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXGPU* pThis, const wchar_t* interfaceId, void** ppInterface */);
+
+ //IADLXGPU
+ ADLX_RESULT (ADLX_STD_CALL *VendorId)(/* IADLXGPU* pThis, const char** vendorId */);
+ ADLX_RESULT (ADLX_STD_CALL *ASICFamilyType)(/* IADLXGPU* pThis, ADLX_ASIC_FAMILY_TYPE* asicFamilyType */);
+ ADLX_RESULT (ADLX_STD_CALL *Type)(/* IADLXGPU* pThis, ADLX_GPU_TYPE* gpuType */);
+ ADLX_RESULT (ADLX_STD_CALL *IsExternal)(/* IADLXGPU* pThis, adlx_bool* isExternal */);
+ ADLX_RESULT (ADLX_STD_CALL *Name)(/* IADLXGPU* pThis, const char** gpuName */);
+ ADLX_RESULT (ADLX_STD_CALL *DriverPath)(/* IADLXGPU* pThis, const char** driverPath */);
+ ADLX_RESULT (ADLX_STD_CALL *PNPString)(/* IADLXGPU* pThis, const char** pnpString */);
+ ADLX_RESULT (ADLX_STD_CALL *HasDesktops)(/* IADLXGPU* pThis, adlx_bool* hasDesktops */);
+ ADLX_RESULT (ADLX_STD_CALL *TotalVRAM)(IADLXGPU* pThis, adlx_uint* vramMB); // Used
+ ADLX_RESULT (ADLX_STD_CALL *VRAMType)(/* IADLXGPU* pThis, const char** type */);
+ ADLX_RESULT (ADLX_STD_CALL *BIOSInfo)(/* IADLXGPU* pThis, const char** partNumber, const char** version, const char** date */);
+ ADLX_RESULT (ADLX_STD_CALL *DeviceId)(/* IADLXGPU* pThis, const char** deviceId */);
+ ADLX_RESULT (ADLX_STD_CALL *RevisionId)(/* IADLXGPU* pThis, const char** revisionId */);
+ ADLX_RESULT (ADLX_STD_CALL *SubSystemId)(/* IADLXGPU* pThis, const char** subSystemId */);
+ ADLX_RESULT (ADLX_STD_CALL *SubSystemVendorId)(/* IADLXGPU* pThis, const char** subSystemVendorId */);
+ ADLX_RESULT (ADLX_STD_CALL *UniqueId)(IADLXGPU* pThis, adlx_int* uniqueId); // Used
+} IADLXGPUVtbl;
+struct IADLXGPU { const IADLXGPUVtbl *pVtbl; };
+
+typedef struct IADLXGPUListVtbl
+{
+ //IADLXInterface
+ adlx_long (ADLX_STD_CALL *Acquire)(/* IADLXGPUList* pThis */);
+ adlx_long (ADLX_STD_CALL *Release)(IADLXGPUList* pThis); // Used
+ ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXGPUList* pThis, const wchar_t* interfaceId, void** ppInterface */);
+
+ //IADLXList
+ adlx_uint (ADLX_STD_CALL *Size)(/* IADLXGPUList* pThis */);
+ adlx_uint8 (ADLX_STD_CALL *Empty)(/* IADLXGPUList* pThis */);
+ adlx_uint (ADLX_STD_CALL *Begin)(IADLXGPUList* pThis); // Used
+ adlx_uint (ADLX_STD_CALL *End)(IADLXGPUList* pThis); // Used
+ ADLX_RESULT (ADLX_STD_CALL *At)(/* IADLXGPUList* pThis, const adlx_uint location, IADLXInterface** ppItem */);
+ ADLX_RESULT (ADLX_STD_CALL *Clear)(/* IADLXGPUList* pThis */);
+ ADLX_RESULT (ADLX_STD_CALL *Remove_Back)(/* IADLXGPUList* pThis */);
+ ADLX_RESULT (ADLX_STD_CALL *Add_Back)(/* IADLXGPUList* pThis, IADLXInterface* pItem */);
+
+ //IADLXGPUList
+ ADLX_RESULT (ADLX_STD_CALL *At_GPUList)(IADLXGPUList* pThis, const adlx_uint location, IADLXGPU** ppItem); // Used
+ ADLX_RESULT (ADLX_STD_CALL *Add_Back_GPUList)(/* IADLXGPUList* pThis, IADLXGPU* pItem */);
+
+} IADLXGPUListVtbl;
+struct IADLXGPUList { const IADLXGPUListVtbl *pVtbl; };
+
+typedef struct IADLXPerformanceMonitoringServicesVtbl
+{
+ //IADLXInterface
+ adlx_long (ADLX_STD_CALL *Acquire)(/* IADLXPerformanceMonitoringServices* pThis */);
+ adlx_long (ADLX_STD_CALL *Release)(IADLXPerformanceMonitoringServices* pThis); // Used
+ ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXPerformanceMonitoringServices* pThis, const wchar_t* interfaceId, void** ppInterface */);
+
+ //IADLXPerformanceMonitoringServices
+ ADLX_RESULT (ADLX_STD_CALL *GetSamplingIntervalRange)(/* IADLXPerformanceMonitoringServices* pThis, ADLX_IntRange* range */);
+ ADLX_RESULT (ADLX_STD_CALL *SetSamplingInterval)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int intervalMs */);
+ ADLX_RESULT (ADLX_STD_CALL *GetSamplingInterval)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int* intervalMs */);
+ ADLX_RESULT (ADLX_STD_CALL *GetMaxPerformanceMetricsHistorySizeRange)(/* IADLXPerformanceMonitoringServices* pThis, ADLX_IntRange* range */);
+ ADLX_RESULT (ADLX_STD_CALL *SetMaxPerformanceMetricsHistorySize)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int sizeSec */);
+ ADLX_RESULT (ADLX_STD_CALL *GetMaxPerformanceMetricsHistorySize)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int* sizeSec */);
+ ADLX_RESULT (ADLX_STD_CALL *ClearPerformanceMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis */);
+ ADLX_RESULT (ADLX_STD_CALL *GetCurrentPerformanceMetricsHistorySize)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int* sizeSec */);
+ ADLX_RESULT (ADLX_STD_CALL *StartPerformanceMetricsTracking)(/* IADLXPerformanceMonitoringServices* pThis */);
+ ADLX_RESULT (ADLX_STD_CALL *StopPerformanceMetricsTracking)(/* IADLXPerformanceMonitoringServices* pThis */);
+ ADLX_RESULT (ADLX_STD_CALL *GetAllMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int startMs, adlx_int stopMs, IADLXAllMetricsList** ppMetricsList */);
+ ADLX_RESULT (ADLX_STD_CALL *GetGPUMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis, IADLXGPU* pGPU, adlx_int startMs, adlx_int stopMs, IADLXGPUMetricsList** ppMetricsList */);
+ ADLX_RESULT (ADLX_STD_CALL *GetSystemMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int startMs, adlx_int stopMs, IADLXSystemMetricsList** ppMetricsList */);
+ ADLX_RESULT (ADLX_STD_CALL *GetFPSHistory)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int startMs, adlx_int stopMs, IADLXFPSList** ppMetricsList */);
+ ADLX_RESULT (ADLX_STD_CALL *GetCurrentAllMetrics)(/* IADLXPerformanceMonitoringServices* pThis, IADLXAllMetrics** ppMetrics */);
+ ADLX_RESULT (ADLX_STD_CALL *GetCurrentGPUMetrics)(IADLXPerformanceMonitoringServices* pThis, IADLXGPU* pGPU, IADLXGPUMetrics** ppMetrics); // Used
+ ADLX_RESULT (ADLX_STD_CALL *GetCurrentSystemMetrics)(/* IADLXPerformanceMonitoringServices* pThis, IADLXSystemMetrics** ppMetrics */);
+ ADLX_RESULT (ADLX_STD_CALL *GetCurrentFPS)(/* IADLXPerformanceMonitoringServices* pThis, IADLXFPS** ppMetrics */);
+ ADLX_RESULT (ADLX_STD_CALL *GetSupportedGPUMetrics)(IADLXPerformanceMonitoringServices* pThis, IADLXGPU* pGPU, IADLXGPUMetricsSupport** ppMetricsSupported); // Used
+ ADLX_RESULT (ADLX_STD_CALL *GetSupportedSystemMetrics)(/* IADLXPerformanceMonitoringServices* pThis, IADLXSystemMetricsSupport** ppMetricsSupported */);
+}IADLXPerformanceMonitoringServicesVtbl;
+struct IADLXPerformanceMonitoringServices { const IADLXPerformanceMonitoringServicesVtbl *pVtbl; };
+
+typedef struct IADLXGPUMetricsSupportVtbl
+{
+ //IADLXInterface
+ adlx_long (ADLX_STD_CALL* Acquire)(/* IADLXGPUMetricsSupport* pThis */);
+ adlx_long (ADLX_STD_CALL* Release)(IADLXGPUMetricsSupport* pThis); // Used
+ ADLX_RESULT (ADLX_STD_CALL* QueryInterface)(/* IADLXGPUMetricsSupport* pThis, const wchar_t* interfaceId, void** ppInterface */);
+
+ //IADLXGPUMetricsSupport
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUUsage)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUClockSpeed)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUVRAMClockSpeed)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUTemperature)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUHotspotTemperature)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUPower)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUTotalBoardPower)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUFanSpeed)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUVRAM)(IADLXGPUMetricsSupport* pThis, adlx_bool* supported); // Used
+ ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUVoltage)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
+
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUUsageRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUClockSpeedRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUVRAMClockSpeedRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUTemperatureRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUHotspotTemperatureRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUPowerRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUFanSpeedRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUVRAMRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUVoltageRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+ ADLX_RESULT (ADLX_STD_CALL* GetGPUTotalBoardPowerRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
+} IADLXGPUMetricsSupportVtbl;
+struct IADLXGPUMetricsSupport { const IADLXGPUMetricsSupportVtbl *pVtbl; };
+
+typedef struct IADLXGPUMetricsVtbl
+{
+ //IADLXInterface
+ adlx_long (ADLX_STD_CALL* Acquire)(/* IADLXGPUMetrics* pThis */);
+ adlx_long (ADLX_STD_CALL* Release)(IADLXGPUMetrics* pThis); // Used
+ ADLX_RESULT (ADLX_STD_CALL* QueryInterface)(/* IADLXGPUMetrics* pThis, const wchar_t* interfaceId, void** ppInterface */);
+
+ //IADLXGPUMetrics
+ ADLX_RESULT (ADLX_STD_CALL* TimeStamp)(/* IADLXGPUMetrics* pThis, adlx_int64* ms */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUUsage)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUClockSpeed)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUVRAMClockSpeed)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUTemperature)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUHotspotTemperature)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUPower)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUTotalBoardPower)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUFanSpeed)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
+ ADLX_RESULT (ADLX_STD_CALL* GPUVRAM)(IADLXGPUMetrics* pThis, adlx_int* data); // Used
+ ADLX_RESULT (ADLX_STD_CALL* GPUVoltage)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
+} IADLXGPUMetricsVtbl;
+struct IADLXGPUMetrics { const IADLXGPUMetricsVtbl *pVtbl; };
+
+struct {
+ void *handle;
+ ADLX_RESULT (*ADLXInitialize)(adlx_uint64 version, IADLXSystem** ppSystem);
+ ADLX_RESULT (*ADLXInitializeWithIncompatibleDriver)(adlx_uint64 version, IADLXSystem** ppSystem);
+ ADLX_RESULT (*ADLXQueryVersion)(const char** version);
+ ADLX_RESULT (*ADLXTerminate)();
+ IADLXSystem *sys;
+} adlx { NULL, NULL, NULL, NULL, NULL, NULL };
+static std::mutex ggml_adlx_lock;
+
+extern "C" {
+
+int ggml_hip_mgmt_init() {
+ std::lock_guard<std::mutex> lock(ggml_adlx_lock);
+ if (adlx.handle != NULL) {
+ // Already initialized
+ return 0;
+ }
+ DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
+ SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
+ fs::path libPath = fs::path("\\Windows") / fs::path("System32") / fs::path("amdadlx64.dll");
+
+ adlx.handle = (void*)LoadLibraryW(libPath.wstring().c_str());
+ if (adlx.handle == NULL) {
+ return ADLX_NOT_FOUND;
+ }
+
+ adlx.ADLXInitialize = (ADLX_RESULT (*)(adlx_uint64 version, IADLXSystem **ppSystem)) GetProcAddress((HMODULE)(adlx.handle), "ADLXInitialize");
+ adlx.ADLXInitializeWithIncompatibleDriver = (ADLX_RESULT (*)(adlx_uint64 version, IADLXSystem **ppSystem)) GetProcAddress((HMODULE)(adlx.handle), "ADLXInitializeWithIncompatibleDriver");
+ adlx.ADLXTerminate = (ADLX_RESULT (*)()) GetProcAddress((HMODULE)(adlx.handle), "ADLXTerminate");
+ adlx.ADLXQueryVersion = (ADLX_RESULT (*)(const char **version)) GetProcAddress((HMODULE)(adlx.handle), "ADLXQueryVersion");
+ if (adlx.ADLXInitialize == NULL || adlx.ADLXInitializeWithIncompatibleDriver == NULL || adlx.ADLXTerminate == NULL) {
+ GGML_LOG_INFO("%s unable to locate required symbols in amdadlx64.dll, falling back to hip free memory reporting", __func__);
+ FreeLibrary((HMODULE)(adlx.handle));
+ adlx.handle = NULL;
+ return ADLX_NOT_FOUND;
+ }
+
+ SetErrorMode(old_mode);
+
+ // Aid in troubleshooting...
+ if (adlx.ADLXQueryVersion != NULL) {
+ const char *version = NULL;
+ ADLX_RESULT status = adlx.ADLXQueryVersion(&version);
+ if (ADLX_SUCCEEDED(status)) {
+ GGML_LOG_DEBUG("%s located ADLX version %s\n", __func__, version);
+ }
+ }
+
+ ADLX_RESULT status = adlx.ADLXInitialize(ADLX_FULL_VERSION, &adlx.sys);
+ if (ADLX_FAILED(status)) {
+ // GGML_LOG_DEBUG("%s failed to initialize ADLX error=%d - attempting with incompatible driver...\n", __func__, status);
+ // Try with the incompatible driver
+ status = adlx.ADLXInitializeWithIncompatibleDriver(ADLX_FULL_VERSION, &adlx.sys);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s failed to initialize ADLX error=%d\n", __func__, status);
+ FreeLibrary((HMODULE)(adlx.handle));
+ adlx.handle = NULL;
+ adlx.sys = NULL;
+ return status;
+ }
+ // GGML_LOG_DEBUG("%s initialized ADLX with incpomatible driver\n", __func__);
+ }
+ return ADLX_OK;
+}
+
+void ggml_hip_mgmt_release() {
+ std::lock_guard<std::mutex> lock(ggml_adlx_lock);
+ if (adlx.handle == NULL) {
+ // Already free
+ return;
+ }
+ ADLX_RESULT status = adlx.ADLXTerminate();
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s failed to terminate Adlx %d\n", __func__, status);
+ // Unload anyway...
+ }
+ FreeLibrary((HMODULE)(adlx.handle));
+ adlx.handle = NULL;
+}
+
+#define adlx_gdm_cleanup \
+ if (gpuMetricsSupport != NULL) gpuMetricsSupport->pVtbl->Release(gpuMetricsSupport); \
+ if (gpuMetrics != NULL) gpuMetrics->pVtbl->Release(gpuMetrics); \
+ if (perfMonitoringServices != NULL) perfMonitoringServices->pVtbl->Release(perfMonitoringServices); \
+ if (gpus != NULL) gpus->pVtbl->Release(gpus); \
+ if (gpu != NULL) gpu->pVtbl->Release(gpu)
+
+int ggml_hip_get_device_memory(int pci_bus_id, int pci_device_id, size_t *free, size_t *total) {
+ std::lock_guard<std::mutex> lock(ggml_adlx_lock);
+ if (adlx.handle == NULL) {
+ GGML_LOG_INFO("%s ADLX was not initialized\n", __func__);
+ return ADLX_ADL_INIT_ERROR;
+ }
+ IADLXGPUMetricsSupport *gpuMetricsSupport = NULL;
+ IADLXPerformanceMonitoringServices *perfMonitoringServices = NULL;
+ IADLXGPUList* gpus = NULL;
+ IADLXGPU* gpu = NULL;
+ IADLXGPUMetrics *gpuMetrics = NULL;
+ ADLX_RESULT status;
+ // The "UniqueID" exposed in ADLX is the PCI Bus and Device IDs
+ adlx_int target = (pci_bus_id << 8) | (pci_device_id & 0xff);
+
+ status = adlx.sys->pVtbl->GetPerformanceMonitoringServices(adlx.sys, &perfMonitoringServices);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s GetPerformanceMonitoringServices failed %d\n", __func__, status);
+ return status;
+ }
+
+ status = adlx.sys->pVtbl->GetGPUs(adlx.sys, &gpus);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s GetGPUs failed %d\n", __func__, status);
+ adlx_gdm_cleanup;
+ return status;
+ }
+
+ // Get GPU list
+ for (adlx_uint crt = gpus->pVtbl->Begin(gpus); crt != gpus->pVtbl->End(gpus); ++crt)
+ {
+ status = gpus->pVtbl->At_GPUList(gpus, crt, &gpu);
+ if (ADLX_FAILED(status))
+ {
+ GGML_LOG_INFO("%s %d] At_GPUList failed %d\n", __func__, crt, status);
+ continue;
+ }
+ adlx_int id;
+ status = gpu->pVtbl->UniqueId(gpu, &id);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s %d] UniqueId lookup failed %d\n", __func__, crt, status);
+ gpu->pVtbl->Release(gpu);
+ gpu = NULL;
+ continue;
+ }
+ if (id != target) {
+ GGML_LOG_DEBUG("%s %d] GPU UniqueId: %x does not match target %02x %02x\n", __func__, crt, id, pci_bus_id, pci_device_id);
+ gpu->pVtbl->Release(gpu);
+ gpu = NULL;
+ continue;
+ }
+ // Any failures at this point should cause a fall-back to other APIs
+ status = perfMonitoringServices->pVtbl->GetSupportedGPUMetrics(perfMonitoringServices, gpu, &gpuMetricsSupport);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s GetSupportedGPUMetrics failed %d\n", __func__, status);
+ adlx_gdm_cleanup;
+ return status;
+ }
+ status = perfMonitoringServices->pVtbl->GetCurrentGPUMetrics(perfMonitoringServices, gpu, &gpuMetrics);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s GetCurrentGPUMetrics failed %d\n", __func__, status);
+ adlx_gdm_cleanup;
+ return status;
+ }
+
+ adlx_bool supported = false;
+ status = gpuMetricsSupport->pVtbl->IsSupportedGPUVRAM(gpuMetricsSupport, &supported);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s IsSupportedGPUVRAM failed %d\n", __func__, status);
+ adlx_gdm_cleanup;
+ return status;
+ }
+
+ adlx_uint totalVRAM = 0;
+ status = gpu->pVtbl->TotalVRAM(gpu, &totalVRAM);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s TotalVRAM failed %d\n", __func__, status);
+ adlx_gdm_cleanup;
+ return status;
+ }
+
+ adlx_int usedVRAM = 0;
+ status = gpuMetrics->pVtbl->GPUVRAM(gpuMetrics, &usedVRAM);
+ if (ADLX_FAILED(status)) {
+ GGML_LOG_INFO("%s GPUVRAM failed %d\n", __func__, status);
+ adlx_gdm_cleanup;
+ return status;
+ }
+ *total = size_t(totalVRAM) * 1024 * 1024;
+ *free = size_t(totalVRAM-usedVRAM) * 1024 * 1024;
+
+ adlx_gdm_cleanup;
+ return ADLX_OK;
+ }
+ adlx_gdm_cleanup;
+ return ADLX_NOT_FOUND;
+}
+
+} // extern "C"
+
+#else // #ifdef _WIN32
+
+extern "C" {
+
+// TODO Linux implementation of accurate VRAM reporting
+int ggml_hip_mgmt_init() {
+ return -1;
+}
+void ggml_hip_mgmt_release() {}
+int ggml_hip_get_device_memory(int pci_bus_id, int pci_device_id, size_t *free, size_t *total) {
+ return -1;
+}
+
+} // extern "C"
+
+#endif // #ifdef _WIN32
\ No newline at end of file
diff --git a/ggml/src/mem_nvml.cpp b/ggml/src/mem_nvml.cpp
new file mode 100644
index 000000000..aa05e9dc1
--- /dev/null
+++ b/ggml/src/mem_nvml.cpp
@@ -0,0 +1,172 @@
+// NVIDIA Management Library (NVML)
+//
+// https://developer.nvidia.com/management-library-nvml
+//
+// This library provides accurate VRAM reporting for NVIDIA GPUs, particularly
+// on Windows, where the cuda library provides inaccurate VRAM usage metrics. The
+// runtime DLL is installed with every driver on Windows, and most Linux
+// systems, and the headers are included in the standard CUDA SDK install. As
+// such, we can include the header here to simplify the code.
+
+
+#include "ggml-impl.h"
+#include <filesystem>
+#include <mutex>
+
+#ifdef _WIN32
+# define WIN32_LEAN_AND_MEAN
+# ifndef NOMINMAX
+# define NOMINMAX
+# endif
+# include <windows.h>
+#else
+# include <dlfcn.h>
+# include <unistd.h>
+#endif
+
+namespace fs = std::filesystem;
+
+// Minimal definitions to avoid including the nvml.h header
+typedef enum nvmlReturn_enum
+{
+ // cppcheck-suppress *
+ NVML_SUCCESS = 0, //!< The operation was successful
+ NVML_ERROR_UNINITIALIZED = 1, //!< NVML was not first initialized with nvmlInit()
+ NVML_ERROR_INVALID_ARGUMENT = 2, //!< A supplied argument is invalid
+ NVML_ERROR_NOT_SUPPORTED = 3, //!< The requested operation is not available on target device
+ NVML_ERROR_NO_PERMISSION = 4, //!< The current user does not have permission for operation
+ NVML_ERROR_ALREADY_INITIALIZED = 5, //!< Deprecated: Multiple initializations are now allowed through ref counting
+ NVML_ERROR_NOT_FOUND = 6, //!< A query to find an object was unsuccessful
+ NVML_ERROR_INSUFFICIENT_SIZE = 7, //!< An input argument is not large enough
+ NVML_ERROR_INSUFFICIENT_POWER = 8, //!< A device's external power cables are not properly attached
+ NVML_ERROR_DRIVER_NOT_LOADED = 9, //!< NVIDIA driver is not loaded
+ NVML_ERROR_TIMEOUT = 10, //!< User provided timeout passed
+ NVML_ERROR_IRQ_ISSUE = 11, //!< NVIDIA Kernel detected an interrupt issue with a GPU
+ NVML_ERROR_LIBRARY_NOT_FOUND = 12, //!< NVML Shared Library couldn't be found or loaded
+ NVML_ERROR_FUNCTION_NOT_FOUND = 13, //!< Local version of NVML doesn't implement this function
+ NVML_ERROR_CORRUPTED_INFOROM = 14, //!< infoROM is corrupted
+ NVML_ERROR_GPU_IS_LOST = 15, //!< The GPU has fallen off the bus or has otherwise become inaccessible
+ NVML_ERROR_RESET_REQUIRED = 16, //!< The GPU requires a reset before it can be used again
+ NVML_ERROR_OPERATING_SYSTEM = 17, //!< The GPU control device has been blocked by the operating system/cgroups
+ NVML_ERROR_LIB_RM_VERSION_MISMATCH = 18, //!< RM detects a driver/library version mismatch
+ NVML_ERROR_IN_USE = 19, //!< An operation cannot be performed because the GPU is currently in use
+ NVML_ERROR_MEMORY = 20, //!< Insufficient memory
+ NVML_ERROR_NO_DATA = 21, //!< No data
+ NVML_ERROR_VGPU_ECC_NOT_SUPPORTED = 22, //!< The requested vgpu operation is not available on target device, becasue ECC is enabled
+ NVML_ERROR_INSUFFICIENT_RESOURCES = 23, //!< Ran out of critical resources, other than memory
+ NVML_ERROR_FREQ_NOT_SUPPORTED = 24, //!< Ran out of critical resources, other than memory
+ NVML_ERROR_ARGUMENT_VERSION_MISMATCH = 25, //!< The provided version is invalid/unsupported
+ NVML_ERROR_DEPRECATED = 26, //!< The requested functionality has been deprecated
+ NVML_ERROR_NOT_READY = 27, //!< The system is not ready for the request
+ NVML_ERROR_GPU_NOT_FOUND = 28, //!< No GPUs were found
+ NVML_ERROR_INVALID_STATE = 29, //!< Resource not in correct state to perform requested operation
+ NVML_ERROR_UNKNOWN = 999 //!< An internal driver error occurred
+} nvmlReturn_t;
+typedef struct nvmlDevice_st* nvmlDevice_t;
+typedef struct nvmlMemory_st
+{
+ unsigned long long total; //!< Total physical device memory (in bytes)
+ unsigned long long free; //!< Unallocated device memory (in bytes)
+ unsigned long long used; //!< Sum of Reserved and Allocated device memory (in bytes).
+ //!< Note that the driver/GPU always sets aside a small amount of memory for bookkeeping
+} nvmlMemory_t;
+// end nvml.h definitions
+
+struct {
+ void *handle;
+ nvmlReturn_t (*nvmlInit_v2)(void);
+ nvmlReturn_t (*nvmlShutdown)(void);
+ nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
+ nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
+} nvml { NULL, NULL, NULL, NULL, NULL };
+static std::mutex ggml_nvml_lock;
+
+extern "C" {
+
+int ggml_nvml_init() {
+ std::lock_guard<std::mutex> lock(ggml_nvml_lock);
+ if (nvml.handle != NULL) {
+ // Already initialized
+ return 0;
+ }
+#ifdef _WIN32
+ DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
+ SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
+ fs::path libPath[2];
+ const char * programDir = std::getenv("ProgramW6432");
+ if (programDir == NULL) {
+ libPath[0] = fs::path("Program Files") / fs::path("NVIDIA Corporation") / fs::path("NVSMI") / fs::path("NVML.dll");
+ } else {
+ libPath[0] = fs::path(programDir) / fs::path("NVIDIA Corporation") / fs::path("NVSMI") / fs::path("NVML.dll");
+ }
+ libPath[1] = fs::path("\\Windows") / fs::path("System32") / fs::path("NVML.dll");
+
+ for (int i = 0; i < 2; i++) {
+ nvml.handle = (void*)LoadLibraryW(libPath[i].wstring().c_str());
+ if (nvml.handle != NULL) {
+ break;
+ }
+ }
+ if (nvml.handle == NULL) {
+ return NVML_ERROR_NOT_FOUND;
+ }
+
+ nvml.nvmlInit_v2 = (nvmlReturn_enum (*)()) GetProcAddress((HMODULE)(nvml.handle), "nvmlInit_v2");
+ nvml.nvmlShutdown = (nvmlReturn_enum (*)()) GetProcAddress((HMODULE)(nvml.handle), "nvmlShutdown");
+ nvml.nvmlDeviceGetHandleByUUID = (nvmlReturn_t (*)(const char *, nvmlDevice_t *)) GetProcAddress((HMODULE)(nvml.handle), "nvmlDeviceGetHandleByUUID");
+ nvml.nvmlDeviceGetMemoryInfo = (nvmlReturn_t (*)(nvmlDevice_t, nvmlMemory_t *)) GetProcAddress((HMODULE)(nvml.handle), "nvmlDeviceGetMemoryInfo");
+ if (nvml.nvmlInit_v2 == NULL || nvml.nvmlShutdown == NULL || nvml.nvmlDeviceGetHandleByUUID == NULL || nvml.nvmlDeviceGetMemoryInfo == NULL) {
+ GGML_LOG_INFO("%s unable to locate required symbols in NVML.dll", __func__);
+ FreeLibrary((HMODULE)(nvml.handle));
+ nvml.handle = NULL;
+ return NVML_ERROR_NOT_FOUND;
+ }
+
+ SetErrorMode(old_mode);
+
+#else
+ // Not currently wired up on Linux
+ return NVML_ERROR_NOT_SUPPORTED;
+#endif
+ int status = nvml.nvmlInit_v2();
+ return NVML_SUCCESS;
+}
+
+void ggml_nvml_release() {
+ std::lock_guard<std::mutex> lock(ggml_nvml_lock);
+ if (nvml.handle == NULL) {
+ // Already free
+ return;
+ }
+ nvmlReturn_enum status = nvml.nvmlShutdown();
+ if (status != NVML_SUCCESS) {
+ GGML_LOG_INFO("%s failed to shutdown NVML: %d\n", __func__, status);
+ }
+#ifdef _WIN32
+ FreeLibrary((HMODULE)(nvml.handle));
+ nvml.handle = NULL;
+#else
+ // Not currently wired up on Linux
+#endif
+}
+
+int ggml_nvml_get_device_memory(const char *uuid, size_t *free, size_t *total) {
+ std::lock_guard<std::mutex> lock(ggml_nvml_lock);
+ if (nvml.handle == NULL) {
+ return NVML_ERROR_UNINITIALIZED;
+ }
+ nvmlDevice_t device;
+ auto status = nvml.nvmlDeviceGetHandleByUUID(uuid, &device);
+ if (status != NVML_SUCCESS) {
+ return status;
+ }
+ nvmlMemory_t memInfo = {0};
+ status = nvml.nvmlDeviceGetMemoryInfo(device, &memInfo);
+ if (status == NVML_SUCCESS) {
+ *free = memInfo.free;
+ *total = memInfo.total;
+ }
+ return status;
+}
+
+}
\ No newline at end of file

View File

@ -0,0 +1,57 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Tue, 23 Sep 2025 15:41:58 -0700
Subject: [PATCH] ggml: Backport scale kernel fixes
The GGML scale kernel uses signed 32-bit ints to represent
the number of elements in the tensor. For large images,
mistral-small3.2 overflows this, triggering CUDA errors due
to negative arguments.
Currently, this can happen when the user passes a large image
to mistral-small3.2. However, with upcoming changes to reserve
CUDA memory, it happens every time mistral-small is loaded as
we reserve using a worst case batch.
This patch is part of an upstream GGML commit and should be removed
after GGML is updated past 0a1b398 "ggml: add ops for WAN video model
(cuda && cpu) (#15669)".
Fixes #10388
---
ggml/src/ggml-cuda/scale.cu | 19 ++++++++++---------
1 file changed, 10 insertions(+), 9 deletions(-)
diff --git a/ggml/src/ggml-cuda/scale.cu b/ggml/src/ggml-cuda/scale.cu
index 2ee9e5889..0ddeff6a1 100644
--- a/ggml/src/ggml-cuda/scale.cu
+++ b/ggml/src/ggml-cuda/scale.cu
@@ -1,18 +1,19 @@
#include "scale.cuh"
-static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+#define MAX_GRIDDIM_X 0x7FFFFFFF
- if (i >= k) {
- return;
- }
+static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int64_t nelements) {
+ int64_t tid = (int64_t)blockIdx.x * (int64_t)blockDim.x + (int64_t)threadIdx.x;
+ int64_t stride = (int64_t)blockDim.x * (int64_t)gridDim.x;
- dst[i] = scale * x[i] + bias;
+ for (int64_t i = tid; i < nelements; i += stride) {
+ dst[i] = scale * x[i] + bias;
+ }
}
-static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
- scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, k);
+static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int64_t nelements, cudaStream_t stream) {
+ const int64_t num_blocks = (nelements + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
+ scale_f32<<<MIN(MAX_GRIDDIM_X, num_blocks), CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, nelements);
}
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@ -196,7 +196,7 @@ func estimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
useFlashAttention := (envconfig.FlashAttention() || f.FlashAttention()) &&
discover.GetGPUInfo().FlashAttentionSupported() &&
(discover.GpuInfoList)(gpus).FlashAttentionSupported() &&
f.SupportsFlashAttention()
var kvct string
@ -231,7 +231,7 @@ func estimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
if gpus[0].Library == "Metal" {
graphPartialOffload = graphFullOffload
} else if len(gpus) > 1 {
// multigpu should always use the partial graph size

View File

@ -12,6 +12,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
)
func TestEstimateGPULayers(t *testing.T) {
@ -55,7 +56,9 @@ func TestEstimateGPULayers(t *testing.T) {
// Simple CPU scenario
gpus := []discover.GpuInfo{
{
Library: "cpu",
DeviceID: ml.DeviceID{
Library: "cpu",
},
},
}
projectors := []string{}
@ -77,11 +80,15 @@ func TestEstimateGPULayers(t *testing.T) {
gpuMinimumMemory := uint64(2048)
gpus = []discover.GpuInfo{
{
Library: "cuda",
DeviceID: ml.DeviceID{
Library: "cuda",
},
MinimumMemory: gpuMinimumMemory,
},
{
Library: "cuda",
DeviceID: ml.DeviceID{
Library: "cuda",
},
MinimumMemory: gpuMinimumMemory,
},
}

View File

@ -66,7 +66,7 @@ func (e filteredEnv) LogValue() slog.Value {
type LlamaServer interface {
ModelPath() string
Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) error
Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) ([]ml.DeviceID, error)
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
@ -76,8 +76,11 @@ type LlamaServer interface {
Close() error
VRAMSize() uint64 // Total VRAM across all GPUs
TotalSize() uint64
VRAMByGPU(gpuID string) uint64
VRAMByGPU(id ml.DeviceID) uint64
Pid() int
GetPort() int
GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
HasExited() bool
}
// llmServer is an instance of a runner hosting a single model
@ -331,6 +334,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
if gpu.DependencyPath != nil {
slog.Debug("adding gpu dependency paths", "paths", gpu.DependencyPath)
libraryPaths = append(gpu.DependencyPath, libraryPaths...)
ggmlPaths = append(ggmlPaths, gpu.DependencyPath...)
}
}
@ -361,12 +365,8 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
s.cmd.Env = append(s.cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(ggmlPaths, string(filepath.ListSeparator)))
envWorkarounds := []string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
// Always filter down the set of GPUs in case there are any unsupported devices that might crash
envWorkarounds = append(envWorkarounds, gpus.GetVisibleDevicesEnv()...)
envWorkarounds := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path variable with our adjusted version
@ -496,7 +496,7 @@ type LoadResponse struct {
var ErrLoadRequiredFull = errors.New("unable to load full model on GPU")
func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) error {
func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) ([]ml.DeviceID, error) {
systemInfo := discover.GetSystemInfo()
systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory := systemInfo.System.FreeMemory
@ -509,7 +509,7 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
g = pickBestPartialFitByLibrary(s.ggml, []string{s.loadRequest.ProjectorPath}, s.loadRequest.LoraPath, s.options, gpus, s.numParallel)
} else {
slog.Info("model requires more memory than is currently available, evicting a model to make space", "estimate", s.estimate)
return ErrLoadRequiredFull
return nil, ErrLoadRequiredFull
}
}
@ -518,13 +518,13 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && s.estimate.VRAMSize > systemInfo.System.TotalMemory:
case gpus[0].Library == "Metal" && s.estimate.VRAMSize > systemInfo.System.TotalMemory:
// disable partial offloading when model is greater than total system memory as this
// can lead to locking up the system
s.options.NumGPU = 0
case gpus[0].Library != "metal" && s.estimate.Layers == 0:
case gpus[0].Library != "Metal" && s.estimate.Layers == 0:
// Don't bother loading into the GPU if no layers can fit
gpus = discover.GetCPUInfo()
gpus = discover.GpuInfoList{discover.GetCPUInfo()}
case s.options.NumGPU < 0 && s.estimate.Layers > 0 && gpus[0].Library != "cpu":
s.options.NumGPU = s.estimate.Layers
}
@ -537,7 +537,7 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
available := systemInfo.System.FreeMemory + systemInfo.System.FreeSwap
if systemMemoryRequired > available {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.System.TotalMemory), "free", format.HumanBytes2(systemInfo.System.FreeMemory), "swap", format.HumanBytes2(systemInfo.System.FreeSwap))
return fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
}
}
@ -552,7 +552,7 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
// mmap has issues with partial offloading on metal
for _, g := range gpus {
if g.Library == "metal" &&
if g.Library == "Metal" &&
uint64(s.options.NumGPU) > 0 &&
uint64(s.options.NumGPU) < s.ggml.KV().BlockCount()+1 {
s.options.UseMMap = new(bool)
@ -563,7 +563,7 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
// Windows CUDA should not use mmap for best performance
// Linux with a model larger than free space, mmap leads to thrashing
// For CPU loads we want the memory to be allocated, not FS cache
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && s.options.UseMMap == nil) ||
if (runtime.GOOS == "windows" && gpus[0].Library == "CUDA" && s.options.UseMMap == nil) ||
(runtime.GOOS == "linux" && systemInfo.System.FreeMemory < s.estimate.TotalSize && s.options.UseMMap == nil) ||
(gpus[0].Library == "cpu" && s.options.UseMMap == nil) ||
(s.options.UseMMap != nil && !*s.options.UseMMap) {
@ -572,12 +572,12 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
}
if err := s.waitUntilRunnerLaunched(ctx); err != nil {
return err
return nil, err
}
resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
if err != nil {
return err
return nil, err
}
// On the Ollama engine, we can print out a summary of the memory allocations.
@ -588,16 +588,16 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
if !resp.Success {
slog.Warn("failed to allocate memory for model", "memory", resp.Memory)
return errors.New("failed to allocate memory for model")
return nil, errors.New("failed to allocate memory for model")
}
// The llama engine does its memory allocations together with model loading, so we
// need to wait until it is done to ensure that we have accurate memory data before
// loading the next model
if s.textProcessor == nil {
return s.WaitUntilRunning(ctx)
return uniqueDeviceIDs(s.loadRequest.GPULayers), s.WaitUntilRunning(ctx)
} else {
return nil
return uniqueDeviceIDs(s.loadRequest.GPULayers), nil
}
}
@ -610,7 +610,7 @@ func createGPULayers(estimate MemoryEstimate, ggml *ggml.GGML, gpus discover.Gpu
gpuLayers := make(ml.GPULayersList, len(gpus))
for i := range gpuLayers {
gpuLayers[i].ID = gpus[i].ID
gpuLayers[i].DeviceID = gpus[i].DeviceID
}
var sum float32
@ -658,7 +658,9 @@ func createGPULayers(estimate MemoryEstimate, ggml *ggml.GGML, gpus discover.Gpu
//
// This process is repeated for higher levels of loading the model (fit, allocate, commit). The earlier levels are quicker,
// allowing for faster iteration, but may return less information.
func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) error {
//
// Returns the list of GPU IDs that were used in the final allocation on success
func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) ([]ml.DeviceID, error) {
var success bool
defer func() {
if !success {
@ -683,7 +685,7 @@ func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requ
if gpu.FreeMemory < envconfig.GpuOverhead()+gpu.MinimumMemory {
available = 0
}
slog.Info("gpu memory", "id", gpu.ID,
slog.Info("gpu memory", "id", gpu.ID, "library", gpu.Library,
"available", format.HumanBytes2(available),
"free", format.HumanBytes2(gpu.FreeMemory),
"minimum", format.HumanBytes2(gpu.MinimumMemory),
@ -696,11 +698,11 @@ func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requ
gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
if err != nil {
return err
return nil, err
}
if err := s.waitUntilRunnerLaunched(ctx); err != nil {
return err
return nil, err
}
nextOperation:
@ -710,7 +712,7 @@ nextOperation:
s.loadRequest.GPULayers = gpuLayers
resp, err := s.initModel(ctx, s.loadRequest, operation)
if err != nil {
return err
return nil, err
}
resp.Memory.Log(slog.LevelDebug)
@ -722,7 +724,7 @@ nextOperation:
for {
newGPULayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
if err != nil {
return err
return nil, err
}
slog.Debug("new layout created", "layers", newGPULayers)
@ -756,7 +758,7 @@ nextOperation:
newGPULayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
s.options.NumGPU = -1
if err != nil {
return err
return nil, err
}
slog.Debug("new layout created", "layers", newGPULayers)
@ -764,7 +766,7 @@ nextOperation:
s.loadRequest.GPULayers = newGPULayers
resp, err = s.initModel(ctx, s.loadRequest, operation)
if err != nil {
return err
return nil, err
}
resp.Memory.Log(slog.LevelDebug)
@ -773,7 +775,7 @@ nextOperation:
if resp.Success {
verifyGPULayers, err := s.createLayout(systemInfo, gpus, &resp.Memory, requireFull, backoff)
if err != nil {
return err
return nil, err
}
slog.Debug("verifying layout", "layers", verifyGPULayers)
@ -798,7 +800,7 @@ nextOperation:
}
if s.options.NumGPU >= 0 {
return fmt.Errorf("memory layout cannot be allocated with num_gpu = %v", s.options.NumGPU)
return nil, fmt.Errorf("memory layout cannot be allocated with num_gpu = %v", s.options.NumGPU)
}
// Memory allocation failed even though we created a layout that we thought should
@ -808,7 +810,7 @@ nextOperation:
// space.
if backoff > 1 {
slog.Warn("memory layout cannot be allocated", "memory", resp.Memory)
return errors.New("memory layout cannot be allocated")
return nil, errors.New("memory layout cannot be allocated")
} else if backoff == 0 {
backoff = 0.01
} else {
@ -823,7 +825,7 @@ nextOperation:
s.loadRequest.GPULayers = gpuLayers
resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
if err != nil {
return err
return nil, err
}
success = resp.Success
@ -831,10 +833,27 @@ nextOperation:
if !success {
slog.Warn("failed to commit memory for model", "memory", resp.Memory)
return errors.New("failed to commit memory for model")
return nil, errors.New("failed to commit memory for model")
}
return nil
return uniqueDeviceIDs(gpuLayers), nil
}
func uniqueDeviceIDs(gpuLayers ml.GPULayersList) []ml.DeviceID {
devices := []ml.DeviceID{}
for _, layer := range gpuLayers {
new := true
for _, ID := range devices {
if layer.DeviceID == ID {
new = false
break
}
}
if new {
devices = append(devices, layer.DeviceID)
}
}
return devices
}
// createLayout uses the current best view of memory requirements and creates a layout of model layers on GPUs.
@ -853,19 +872,19 @@ func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs d
if memory == nil {
memory = &ml.BackendMemory{CPU: ml.DeviceMemory{
Weights: make([]ml.Memory, s.totalLayers),
Cache: make([]ml.Memory, s.totalLayers),
Weights: make([]uint64, s.totalLayers),
Cache: make([]uint64, s.totalLayers),
}}
}
layers := make([]uint64, len(memory.CPU.Weights))
for i := range layers {
for j := range memory.GPUs {
layers[i] += memory.GPUs[j].Weights[i].Size
layers[i] += memory.GPUs[j].Cache[i].Size
layers[i] += memory.GPUs[j].Weights[i]
layers[i] += memory.GPUs[j].Cache[i]
}
layers[i] += memory.CPU.Weights[i].Size
layers[i] += memory.CPU.Cache[i].Size
layers[i] += memory.CPU.Weights[i]
layers[i] += memory.CPU.Cache[i]
logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
}
@ -879,23 +898,23 @@ func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs d
for i := range gl {
found := false
for j := range memory.GPUs {
if gl[i].ID == memory.GPUs[j].ID {
if memory.GPUs[j].Graph.Size != 0 {
if gl[i].DeviceID == memory.GPUs[j].DeviceID {
if memory.GPUs[j].Graph != 0 {
lastUsedGPU = i
}
reserved := uint64(float32(gl[i].FreeMemory)*backoff) + gl[i].MinimumMemory + envconfig.GpuOverhead() + memory.GPUs[j].Graph.Size
reserved := uint64(float32(gl[i].FreeMemory)*backoff) + gl[i].MinimumMemory + envconfig.GpuOverhead() + memory.GPUs[j].Graph
if gl[i].FreeMemory > reserved {
gl[i].FreeMemory -= reserved
} else {
gl[i].FreeMemory = 0
}
slog.Debug("available gpu", "id", gl[i].ID,
slog.Debug("available gpu", "id", gl[i].ID, "library", gl[i].Library,
"available layer vram", format.HumanBytes2(gl[i].FreeMemory),
"backoff", fmt.Sprintf("%.2f", backoff), "minimum", format.HumanBytes2(gl[i].MinimumMemory),
"overhead", format.HumanBytes2(envconfig.GpuOverhead()),
"graph", format.HumanBytes2(memory.GPUs[j].Graph.Size))
"graph", format.HumanBytes2(memory.GPUs[j].Graph))
found = true
break
@ -914,12 +933,12 @@ func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs d
}
// These sizes will only increase as we go through additional iterations and get additional information.
cpuSize := memory.InputWeights.Size + memory.CPU.Graph.Size
cpuSize := memory.InputWeights + memory.CPU.Graph
var vramSize uint64
for _, gl := range gpuLayers {
for _, gpu := range memory.GPUs {
if gl.ID == gpu.ID {
vramSize += gpu.Graph.Size
if gl.DeviceID == gpu.DeviceID {
vramSize += gpu.Graph
break
}
}
@ -1039,7 +1058,7 @@ func findBestFit(layers []uint64, gpus discover.GpuInfoList, requestedLayers int
// greedyFit assigns layers incrementally to GPUs, spilling over as each runs out of free space
func greedyFit(layers []uint64, gpus discover.GpuInfoList, capacity float32, requestedLayers int) (gpuLayers ml.GPULayersList) {
device := len(gpus) - 1
gpuLayers = ml.GPULayersList{{ID: gpus[device].ID}}
gpuLayers = ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}
freeSpace := uint64(float32(gpus[device].FreeMemory) * capacity)
for i := len(layers) - 1; i >= 0; i-- {
if requestedLayers >= 0 && len(layers)-1-i >= requestedLayers {
@ -1057,7 +1076,7 @@ func greedyFit(layers []uint64, gpus discover.GpuInfoList, capacity float32, req
if device < 0 {
return gpuLayers
}
gpuLayers = append(ml.GPULayersList{{ID: gpus[device].ID}}, gpuLayers...)
gpuLayers = append(ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}, gpuLayers...)
freeSpace = uint64(float32(gpus[device].FreeMemory) * capacity)
}
}
@ -1312,6 +1331,17 @@ func (s *llmServer) Pid() int {
return -1
}
func (s *llmServer) GetPort() int {
return s.port
}
func (s *llmServer) HasExited() bool {
if s.cmd != nil && s.cmd.ProcessState != nil && s.cmd.ProcessState.ExitCode() >= 0 {
return true
}
return false
}
var grammarJSON = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
@ -1386,7 +1416,7 @@ type CompletionResponse struct {
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
slog.Debug("completion request", "images", len(req.Images), "prompt", len(req.Prompt), "format", string(req.Format))
slog.Log(ctx, logutil.LevelTrace, "completion request", "prompt", req.Prompt)
logutil.Trace("completion request", "prompt", req.Prompt)
if len(req.Format) > 0 {
switch string(req.Format) {
@ -1552,7 +1582,7 @@ type EmbeddingResponse struct {
}
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
slog.Log(ctx, logutil.LevelTrace, "embedding request", "input", input)
logutil.Trace("embedding request", "input", input)
if err := s.sem.Acquire(ctx, 1); err != nil {
if errors.Is(err, context.Canceled) {
@ -1704,9 +1734,9 @@ func (s *llamaServer) TotalSize() uint64 {
return s.estimate.TotalSize
}
func (s *llamaServer) VRAMByGPU(gpuID string) uint64 {
func (s *llamaServer) VRAMByGPU(id ml.DeviceID) uint64 {
for i, gpu := range s.gpus {
if gpu.ID == gpuID {
if gpu.DeviceID == id {
if i < len(s.estimate.GPUSizes) {
return s.estimate.GPUSizes[i]
}
@ -1715,6 +1745,11 @@ func (s *llamaServer) VRAMByGPU(gpuID string) uint64 {
return 0
}
func (s *llamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
slog.Debug("llamarunner free vram reporting not supported")
return nil
}
func (s *ollamaServer) VRAMSize() uint64 {
if s.mem == nil {
return 0
@ -1723,21 +1758,21 @@ func (s *ollamaServer) VRAMSize() uint64 {
var mem uint64
for _, g := range s.mem.GPUs {
mem += g.Allocated()
mem += g.Size()
}
// Some elements are always on CPU. However, if we have allocated all layers
// on the GPU then include the CPU components as well, to represent complete offloading.
noCPULayers := true
for i := range s.mem.CPU.Weights {
if s.mem.CPU.Weights[i].Size != 0 || s.mem.CPU.Cache[i].Size != 0 {
if s.mem.CPU.Weights[i] != 0 || s.mem.CPU.Cache[i] != 0 {
noCPULayers = false
break
}
}
if noCPULayers {
mem += s.mem.InputWeights.Size
mem += s.mem.CPU.Graph.Size
mem += s.mem.InputWeights
mem += s.mem.CPU.Graph
}
return mem
@ -1748,25 +1783,37 @@ func (s *ollamaServer) TotalSize() uint64 {
return 0
}
mem := s.mem.InputWeights.Size
mem += s.mem.CPU.Allocated()
mem := s.mem.InputWeights
mem += s.mem.CPU.Size()
for _, g := range s.mem.GPUs {
mem += g.Allocated()
mem += g.Size()
}
return mem
}
func (s *ollamaServer) VRAMByGPU(gpuID string) uint64 {
func (s *ollamaServer) VRAMByGPU(id ml.DeviceID) uint64 {
if s.mem == nil {
return 0
}
for _, g := range s.mem.GPUs {
if g.ID == gpuID {
return g.Allocated()
if g.DeviceID == id {
return g.Size()
}
}
return 0
}
func (s *ollamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
devices, err := discover.GetDevicesFromRunner(ctx, s)
if err != nil {
if s.cmd != nil && s.cmd.ProcessState == nil {
// Still running but hit an error, log
slog.Debug("failure refreshing GPU information", "error", err)
}
// else no longer running so suppress logging as a failure is expected
}
return devices
}

View File

@ -16,8 +16,8 @@ import (
func TestLLMServerFitGPU(t *testing.T) {
type gpu struct {
library string
free int
id ml.DeviceID
free int
}
tests := []struct {
@ -37,91 +37,91 @@ func TestLLMServerFitGPU(t *testing.T) {
},
{
name: "Full single GPU",
gpus: []gpu{{free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256 * format.MebiByte}},
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
numGPU: -1,
expected: ml.GPULayersList{{ID: "gpu0", Layers: []int{0, 1, 2}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{0, 1, 2}}},
},
{
name: "Partial single GPU",
gpus: []gpu{{free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256 * format.MebiByte}},
layers: []int{100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte},
numGPU: -1,
expected: ml.GPULayersList{{ID: "gpu0", Layers: []int{1, 2}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1, 2}}},
},
{
name: "Single GPU with numGPU 1",
gpus: []gpu{{free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256 * format.MebiByte}},
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
numGPU: 1,
expected: ml.GPULayersList{{ID: "gpu0", Layers: []int{1}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1}}},
},
{
name: "Single GPU with numGPU 0",
gpus: []gpu{{free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256 * format.MebiByte}},
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
numGPU: 0,
expected: ml.GPULayersList{},
},
{
name: "Single GPU with numGPU 999",
gpus: []gpu{{free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256 * format.MebiByte}},
layers: []int{100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte},
numGPU: 999,
expected: ml.GPULayersList{{ID: "gpu0", Layers: []int{0, 1, 2, 3}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{0, 1, 2, 3}}},
},
{
name: "Multi GPU fits on one",
gpus: []gpu{{free: 128 * format.MebiByte}, {free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128 * format.MebiByte}, {id: ml.DeviceID{ID: "gpu1"}, free: 256 * format.MebiByte}},
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
numGPU: -1,
expected: ml.GPULayersList{{ID: "gpu1", Layers: []int{0, 1, 2}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0, 1, 2}}},
},
{
name: "Multi GPU split",
gpus: []gpu{{free: 128 * format.MebiByte}, {free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128 * format.MebiByte}, {id: ml.DeviceID{ID: "gpu1"}, free: 256 * format.MebiByte}},
layers: []int{256 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
numGPU: -1,
expected: ml.GPULayersList{{ID: "gpu1", Layers: []int{0}}, {ID: "gpu0", Layers: []int{1, 2}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0}}, {DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1, 2}}},
},
{
name: "Multi GPU partial",
gpus: []gpu{{free: 128 * format.MebiByte}, {free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128 * format.MebiByte}, {id: ml.DeviceID{ID: "gpu1"}, free: 256 * format.MebiByte}},
layers: []int{256 * format.MebiByte, 256 * format.MebiByte, 50 * format.MebiByte},
numGPU: -1,
expected: ml.GPULayersList{{ID: "gpu1", Layers: []int{1}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{1}}},
},
{
name: "Multi GPU numGPU 1",
gpus: []gpu{{free: 128 * format.MebiByte}, {free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128 * format.MebiByte}, {id: ml.DeviceID{ID: "gpu1"}, free: 256 * format.MebiByte}},
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
numGPU: 1,
expected: ml.GPULayersList{{ID: "gpu1", Layers: []int{1}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{1}}},
},
{
name: "Multi GPU numGPU 2",
gpus: []gpu{{free: 128 * format.MebiByte}, {free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128 * format.MebiByte}, {id: ml.DeviceID{ID: "gpu1"}, free: 256 * format.MebiByte}},
layers: []int{256 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
numGPU: 2,
expected: ml.GPULayersList{{ID: "gpu1", Layers: []int{0}}, {ID: "gpu0", Layers: []int{1}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0}}, {DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1}}},
},
{
name: "Multi GPU numGPU 999",
gpus: []gpu{{free: 128 * format.MebiByte}, {free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128 * format.MebiByte}, {id: ml.DeviceID{ID: "gpu1"}, free: 256 * format.MebiByte}},
layers: []int{256 * format.MebiByte, 256 * format.MebiByte, 50 * format.MebiByte},
numGPU: 999,
expected: ml.GPULayersList{{ID: "gpu1", Layers: []int{0, 1}}, {ID: "gpu0", Layers: []int{2}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0, 1}}, {DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{2}}},
},
{
name: "Multi GPU different libraries",
gpus: []gpu{{library: "cuda", free: 128 * format.MebiByte}, {library: "rocm", free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{Library: "CUDA", ID: "gpu0"}, free: 128 * format.MebiByte}, {id: ml.DeviceID{Library: "ROCm", ID: "gpu1"}, free: 256 * format.MebiByte}},
layers: []int{128 * format.MebiByte, 128 * format.MebiByte, 50 * format.MebiByte},
numGPU: -1,
expected: ml.GPULayersList{{ID: "gpu1", Layers: []int{0, 1}}},
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1", Library: "ROCm"}, Layers: []int{0, 1}}},
},
{
name: "requireFull",
gpus: []gpu{{free: 256 * format.MebiByte}},
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256 * format.MebiByte}},
layers: []int{100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte},
numGPU: -1,
requireFull: true,
@ -138,8 +138,7 @@ func TestLLMServerFitGPU(t *testing.T) {
gpus := make(discover.GpuInfoList, len(tt.gpus))
for i := range tt.gpus {
gpus[i].ID = fmt.Sprintf("gpu%d", i)
gpus[i].Library = tt.gpus[i].library
gpus[i].DeviceID = tt.gpus[i].id
gpus[i].FreeMemory = uint64(tt.gpus[i].free)
}
@ -155,18 +154,18 @@ func TestLLMServerFitGPU(t *testing.T) {
}
s.mem = &ml.BackendMemory{CPU: ml.DeviceMemory{
Weights: make([]ml.Memory, s.totalLayers),
Cache: make([]ml.Memory, s.totalLayers),
Weights: make([]uint64, s.totalLayers),
Cache: make([]uint64, s.totalLayers),
}, GPUs: make([]ml.DeviceMemory, len(gpus))}
for i := range tt.layers {
s.mem.CPU.Weights[i].Size = uint64(tt.layers[i])
s.mem.CPU.Weights[i] = uint64(tt.layers[i])
}
for i := range s.mem.GPUs {
s.mem.GPUs[i].ID = fmt.Sprintf("gpu%d", i)
s.mem.GPUs[i].Weights = make([]ml.Memory, s.totalLayers)
s.mem.GPUs[i].Cache = make([]ml.Memory, s.totalLayers)
s.mem.GPUs[i].DeviceID = gpus[i].DeviceID
s.mem.GPUs[i].Weights = make([]uint64, s.totalLayers)
s.mem.GPUs[i].Cache = make([]uint64, s.totalLayers)
}
gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, tt.requireFull, 0)

View File

@ -5,14 +5,11 @@ import (
"context"
"encoding/binary"
"fmt"
"hash/maphash"
"log/slog"
"math"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs"
)
@ -29,6 +26,9 @@ type Backend interface {
Get(name string) Tensor
NewContext() Context
NewContextSize(size int) Context
// Enumerate the devices available for inference via this backend
BackendDevices() []DeviceInfo
}
// BackendCacheConfig should be implemented by backends that need special output
@ -60,77 +60,6 @@ type CacheConfig struct {
MaskBatchPadding int
}
// GPULayers is a set of layers to be allocated on a single GPU
type GPULayers struct {
// ID is the identifier of the GPU, as reported in DeviceMemory
ID string
// Layers is a set of layer indicies to load
Layers []int
}
func (g GPULayers) String() string {
if len(g.Layers) == 0 {
return ""
}
slices.Sort(g.Layers)
contiguous := true
base := g.Layers[0]
for i := range g.Layers {
if g.Layers[i] != base+i {
contiguous = false
break
}
}
if contiguous {
return fmt.Sprintf("ID:%v Layers:%v(%v..%v)", g.ID, len(g.Layers), g.Layers[0], g.Layers[len(g.Layers)-1])
} else {
return fmt.Sprintf("ID:%v Layers:%v%v", g.ID, len(g.Layers), g.Layers)
}
}
// GPULayersList is a set of layer allocations across multiple GPUs
type GPULayersList []GPULayers
func (l GPULayersList) String() string {
if l.Sum() > 0 {
return fmt.Sprintf("%v%v", l.Sum(), []GPULayers(l))
} else {
return fmt.Sprintf("%v", []GPULayers(l))
}
}
// Sum is the total number of layers assigned across all GPUs
func (l GPULayersList) Sum() int {
var sum int
for _, g := range l {
sum += len(g.Layers)
}
return sum
}
var h maphash.Hash
// Hash is an identifier of this layer assignment
func (l GPULayersList) Hash() uint64 {
h.Reset()
for _, g := range l {
if len(g.Layers) > 0 {
h.WriteString(g.ID)
for _, l := range g.Layers {
binary.Write(&h, binary.NativeEndian, int64(l))
}
}
}
return h.Sum64()
}
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// AllocMemory causes the backend to allocate memory for the model. If
@ -148,201 +77,6 @@ type BackendParams struct {
FlashAttention bool
}
// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
BackendMemory
}
func (e ErrNoMem) Error() string {
return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}
type AllocationStatus int
const (
// Unallocated memory - have not yet attempted to allocate
Unallocated AllocationStatus = iota
// Failed memory - tried to allocate the memory and did not succeed
Failed
// Allocated memory = tried and succeeded to allocate memory
Allocated
)
// Memory is the size of an allocation and whether it was successful.
type Memory struct {
Size uint64
Status AllocationStatus
}
func (m Memory) String() string {
s := fmt.Sprint(m.Size)
switch m.Status {
case Unallocated:
s += "U"
case Failed:
s += "F"
case Allocated:
s += "A"
}
return s
}
// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
// Name is the name of the device as labeled by the backend. It
// may not be persistent across instances of the runner.
Name string
// ID is an identifier for the device for matching with system
// management libraries.
ID string
// Weights is the per-layer memory needed for the model weights.
Weights []Memory
// Cache is the per-layer memory needed for the KV cache.
Cache []Memory
// Graph is the size of the compute graph. It is not per-layer.
Graph Memory
}
// Allocated returns the total size of the memory that has been successfully
// allocated on this device
func (m DeviceMemory) Allocated() uint64 {
var mem uint64
for _, w := range m.Weights {
if w.Status == Allocated {
mem += w.Size
}
}
for _, c := range m.Cache {
if c.Status == Allocated {
mem += c.Size
}
}
if m.Graph.Status == Allocated {
mem += m.Graph.Size
}
return mem
}
func memoryPresent(mem []Memory) bool {
return slices.ContainsFunc(mem, func(m Memory) bool { return m.Size != 0 })
}
func (m DeviceMemory) LogValue() slog.Value {
var attrs []slog.Attr
if memoryPresent(m.Weights) {
attrs = append(attrs, slog.Any("Weights", m.Weights))
}
if memoryPresent(m.Cache) {
attrs = append(attrs, slog.Any("Cache", m.Cache))
}
if m.Graph.Size != 0 {
attrs = append(attrs, slog.Any("Graph", m.Graph))
}
if len(attrs) > 0 && m.ID != "" {
attrs = append([]slog.Attr{slog.String("ID", m.ID)}, attrs...)
}
return slog.GroupValue(attrs...)
}
// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
// InputWeights are always located on the CPU and cannot be moved
InputWeights Memory
// CPU model components are located in system memory. This does not
// include unified memory allocated through the GPU.
CPU DeviceMemory
// GPU model components are located on one or more GPUs.
GPUs []DeviceMemory
}
func (m BackendMemory) LogValue() slog.Value {
var attrs []slog.Attr
if m.InputWeights.Size != 0 {
attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
}
attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
for _, g := range m.GPUs {
attrs = append(attrs, slog.Any(g.Name, g))
}
return slog.GroupValue(attrs...)
}
func sumMemory(mem []Memory) uint64 {
var sum uint64
for _, m := range mem {
sum += m.Size
}
return sum
}
// Log prints a high level summary of the memory (allocated or not)
func (m BackendMemory) Log(level slog.Level) {
var total uint64
for _, gpu := range m.GPUs {
if sum := sumMemory(gpu.Weights); sum > 0 {
slog.Log(context.TODO(), level, "model weights", "device", gpu.Name, "size", format.HumanBytes2(sum))
total += sum
}
}
if sum := m.InputWeights.Size + sumMemory(m.CPU.Weights); sum > 0 {
slog.Log(context.TODO(), level, "model weights", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
total += sum
}
for _, gpu := range m.GPUs {
if sum := sumMemory(gpu.Cache); sum > 0 {
slog.Log(context.TODO(), level, "kv cache", "device", gpu.Name, "size", format.HumanBytes2(sum))
total += sum
}
}
if sum := sumMemory(m.CPU.Cache); sum > 0 {
slog.Log(context.TODO(), level, "kv cache", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
total += sum
}
for _, gpu := range m.GPUs {
if sum := gpu.Graph.Size; sum > 0 {
slog.Log(context.TODO(), level, "compute graph", "device", gpu.Name, "size", format.HumanBytes2(sum))
total += sum
}
}
if sum := m.CPU.Graph.Size; sum > 0 {
slog.Log(context.TODO(), level, "compute graph", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
total += sum
}
if total > 0 {
slog.Log(context.TODO(), level, "total memory", "size", format.HumanBytes2(total))
}
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {

View File

@ -1,5 +1,7 @@
package ggml
// #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
// #cgo windows LDFLAGS: -lpthread
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
@ -159,7 +161,6 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
bt := C.ggml_backend_dev_buffer_type(d)
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, bt)
C.ggml_backend_buft_set_alloc(bt, C.bool(params.AllocMemory))
btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
}
@ -169,8 +170,9 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
requiredMemory.CPU.ID = C.GoString(props.id)
requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)
requiredMemory.CPU.Library = C.GoString(props.library)
requiredMemory.CPU.Weights = make([]uint64, blocks+1)
requiredMemory.CPU.Cache = make([]uint64, blocks+1)
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
@ -181,15 +183,15 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
d: d,
bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...),
})
C.ggml_backend_buft_set_alloc(bt, C.bool(params.AllocMemory))
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(d, &props)
requiredMemory.GPUs[i].ID = C.GoString(props.id)
requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
requiredMemory.GPUs[i].Library = C.GoString(props.library)
requiredMemory.GPUs[i].Weights = make([]uint64, blocks+1)
requiredMemory.GPUs[i].Cache = make([]uint64, blocks+1)
}
// inputs always use cpu
@ -200,7 +202,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
for _, l := range p.Layers {
if l == layer {
for i := range requiredMemory.GPUs {
if requiredMemory.GPUs[i].ID == p.ID {
if requiredMemory.GPUs[i].DeviceID == p.DeviceID {
return gpuDeviceBufferTypes[i]
}
}
@ -275,13 +277,9 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
if params.AllocMemory {
requiredMemory.InputWeights.Status = ml.Allocated
}
requiredMemory.InputWeights.Size += uint64(size)
requiredMemory.InputWeights += uint64(size)
} else {
btDeviceMemory[bt].Weights[layer].Size += uint64(size)
btDeviceMemory[bt].Weights[layer] += uint64(size)
}
//nolint:staticcheck // TODO: check if buffer type supports this tensor
@ -341,47 +339,6 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
}
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
if params.AllocMemory {
for i := range btDeviceMemory[bt].Weights {
if btDeviceMemory[bt].Weights[i].Size != 0 {
if b != nil {
btDeviceMemory[bt].Weights[i].Status = ml.Allocated
} else {
btDeviceMemory[bt].Weights[i].Status = ml.Failed
}
}
}
}
if b == nil {
for _, b := range bbs {
C.ggml_backend_buffer_free(b)
}
for _, ctx := range ctxs {
C.ggml_free(ctx)
}
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
for bs := range maps.Values(bbs) {
logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
// map tensor names to tensors for easy lookup later
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
@ -419,6 +376,46 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
sched := C.ggml_backend_sched_new_ext(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
C._Bool(false),
C._Bool(false),
C._Bool(params.AllocMemory),
)
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
if b == nil {
for _, b := range bbs {
C.ggml_backend_buffer_free(b)
}
for _, ctx := range ctxs {
C.ggml_free(ctx)
}
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
for bs := range maps.Values(bbs) {
logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
return &Backend{
modelPath: modelPath,
allocMemory: params.AllocMemory,
@ -426,18 +423,11 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
meta: meta,
tensorLoadTargets: targets,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
C._Bool(false),
C._Bool(false),
),
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
output: output.d,
sched: sched,
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
output: output.d,
layers: func() map[int]layerDevice {
m := make(map[int]layerDevice)
for i, layer := range layers {
@ -696,6 +686,52 @@ func (b *Backend) CacheConfig() ml.CacheConfig {
}
}
func (b *Backend) BackendDevices() []ml.DeviceInfo {
deviceInfos := []ml.DeviceInfo{}
for _, dev := range gpus {
// If we have a model loaded, and it's only loaded on a subset of the devices
// skip idle/unused devices to avoid initializing them and causing VRAM allocations
if b.allocMemory {
idleDev := true
for _, backend := range b.schedBackends {
if dev == C.ggml_backend_get_device(backend) {
idleDev = false
break
}
}
if idleDev {
slog.Debug("skipping unused backend device", "description", C.GoString(C.ggml_backend_dev_description(dev)))
continue
}
}
info := ml.DeviceInfo{}
props := C.struct_ggml_backend_dev_props{}
C.ggml_backend_dev_get_props(dev, &props)
info.Name = C.GoString(props.name)
info.Description = C.GoString(props.description)
info.ID = C.GoString(props.id)
info.Library = C.GoString(props.library)
info.ComputeMajor = (int)(props.compute_major)
info.ComputeMinor = (int)(props.compute_minor)
info.DriverMajor = (int)(props.driver_major)
info.DriverMinor = (int)(props.driver_minor)
info.Integrated = props.integrated != 0
if props.library != nil {
info.Library = C.GoString(props.library)
}
info.PCIID = fmt.Sprintf("%02x:%02x.%x", props.pci_bus_id, props.pci_device_id, props.pci_domain_id)
info.LibraryPath = ggml.LibPaths()
C.ggml_backend_dev_memory(dev, &props.memory_free, &props.memory_total)
info.TotalMemory = (uint64)(props.memory_total)
info.FreeMemory = (uint64)(props.memory_free)
deviceInfos = append(deviceInfos, info)
}
return deviceInfos
}
type Context struct {
b *Backend
@ -795,24 +831,15 @@ func (c *Context) Reserve() {
// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
for _, bt := range c.b.schedBufts {
c.b.btDeviceMemory[bt].Graph = ml.Memory{}
c.b.btDeviceMemory[bt].Graph = 0
}
for i := range c.b.schedBackends {
bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
graph.Size += uint64(bufferStatus.size)
if c.b.allocMemory {
if bufferStatus.allocated && graph.Status != ml.Failed {
graph.Status = ml.Allocated
} else {
graph.Status = ml.Failed
}
}
bufferSize := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
c.b.btDeviceMemory[c.b.schedBufts[i]].Graph += uint64(bufferSize)
logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferStatus.size)))
"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferSize)))
}
if !reserved {
@ -862,16 +889,7 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if c.layer >= 0 {
cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]
cache.Size += uint64(size)
if c.b.allocMemory {
if b != nil {
cache.Status = ml.Allocated
} else {
cache.Status = ml.Failed
}
}
c.b.btDeviceMemory[c.buft].Cache[c.layer] += uint64(size)
}
if b == nil {

View File

@ -65,12 +65,7 @@ GGML_API bool ggml_gallocr_reserve_n(
GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
struct ggml_allocr_buffer_status {
size_t size;
bool allocated;
};
GGML_API struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
GGML_API size_t ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
// Utils
// Create a buffer and allocate all the tensors in a ggml_context

View File

@ -35,7 +35,6 @@ extern "C" {
//
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
GGML_API void ggml_backend_buft_set_alloc (ggml_backend_buffer_type_t buft, bool alloc);
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
@ -158,6 +157,15 @@ extern "C" {
size_t memory_total;
enum ggml_backend_dev_type type;
struct ggml_backend_dev_caps caps;
int driver_major;
int driver_minor;
int compute_major;
int compute_minor;
int integrated;
int pci_bus_id;
int pci_device_id;
int pci_domain_id;
const char *library;
};
GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
@ -293,6 +301,7 @@ extern "C" {
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload);
GGML_API ggml_backend_sched_t ggml_backend_sched_new_ext(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload, bool alloc_buffers);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
@ -306,12 +315,7 @@ extern "C" {
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
struct ggml_backend_buffer_status {
size_t size;
bool allocated;
};
GGML_API struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);

View File

@ -203,6 +203,8 @@ add_library(ggml-base
ggml-threading.h
ggml-quants.c
ggml-quants.h
mem_hip.cpp
mem_nvml.cpp
gguf.cpp)
target_include_directories(ggml-base PRIVATE .)

View File

@ -932,7 +932,7 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
}
struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
size_t ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
for (int i = 0; i < buffer_id; i++) {
@ -941,13 +941,11 @@ struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gal
// (See above.) However, we need a different check because multiple buffers might be NULL in our
// case and we still want to know the attempted size.
struct ggml_allocr_buffer_status status = {0, true};
return status;
return 0;
}
}
struct ggml_allocr_buffer_status status = {galloc->buffer_sizes[buffer_id], galloc->buffers[buffer_id] != NULL};
return status;
return galloc->buffer_sizes[buffer_id];
}
// utils

View File

@ -26,6 +26,10 @@ extern "C" {
size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
// (optional) check if tensor data is in host memory and uses standard ggml tensor layout (defaults to false)
bool (*is_host) (ggml_backend_buffer_type_t buft);
// (optional) returns a dummy buffer that is equivalent to one created by alloc_buffer but without actually being backed
// by memory
ggml_backend_buffer_t (*noalloc_buffer)(ggml_backend_buffer_type_t buft, size_t size);
};
struct ggml_backend_buffer_type {
@ -116,6 +120,16 @@ extern "C" {
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
// wait for an event on on a different stream
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
// (optional) reserves intermediate buffers needed for the compution
// if alloc is true, memory is actually allocated, otherwise the required amount is just returned by buffer_size
enum ggml_status (*graph_reserve) (ggml_backend_t backend, struct ggml_cgraph * cgraph, bool alloc);
// (optional) returns the memory needed after calling graph_reserve
size_t (*buffer_size) (ggml_backend_t backend);
// (optional) frees memory from intermediate buffers that was allocated either by graph_compute or graph_reserve
void (*reset) (ggml_backend_t backend);
};
struct ggml_backend {

View File

@ -35,10 +35,6 @@ const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name(buft);
}
void ggml_backend_buft_set_alloc(ggml_backend_buffer_type_t buft, bool alloc) {
buft->no_alloc = !alloc;
}
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
if (size == 0) {
// return a dummy buffer for zero-sized allocations
@ -46,7 +42,14 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
}
if (buft->no_alloc) {
ggml_backend_buffer_t buf = ggml_backend_buffer_init(buft, {}, NULL, size);
ggml_backend_buffer_t buf;
if (buft->iface.noalloc_buffer != NULL) {
buf = buft->iface.noalloc_buffer(buft, size);
} else {
buf = ggml_backend_buffer_init(buft, {}, NULL, size);
}
buf->no_alloc = true;
return buf;
}
@ -688,6 +691,12 @@ struct ggml_backend_sched {
bool op_offload;
int debug;
// allocate buffers on attached ggml_backend_buffer_type_t's and during reservation
// if false, dummy buffers are used for faster memory sizing calculations
// the scheduler needs to be recreated with allocated buffers before it can be used
// for computation
bool alloc_buffers;
};
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
@ -1474,6 +1483,17 @@ ggml_backend_sched_t ggml_backend_sched_new(
size_t graph_size,
bool parallel,
bool op_offload) {
return ggml_backend_sched_new_ext(backends, bufts, n_backends, graph_size, parallel, op_offload, true);
}
ggml_backend_sched_t ggml_backend_sched_new_ext(
ggml_backend_t * backends,
ggml_backend_buffer_type_t * bufts,
int n_backends,
size_t graph_size,
bool parallel,
bool op_offload,
bool alloc_buffers) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
@ -1515,10 +1535,13 @@ ggml_backend_sched_t ggml_backend_sched_new(
sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
}
}
sched->bufts[b]->no_alloc = !alloc_buffers;
}
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
sched->op_offload = op_offload;
sched->alloc_buffers = alloc_buffers;
ggml_backend_sched_reset(sched);
@ -1533,6 +1556,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
for (int c = 0; c < sched->n_copies; c++) {
ggml_backend_event_free(sched->events[b][c]);
}
if (sched->backends[b]->iface.reset != NULL) {
sched->backends[b]->iface.reset(sched->backends[b]);
}
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
@ -1572,6 +1599,24 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
return false;
}
if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
return false;
}
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
int split_backend_id = split->backend_id;
ggml_backend_t split_backend = sched->backends[split_backend_id];
if (split_backend->iface.graph_reserve != NULL) {
enum ggml_status ec = split_backend->iface.graph_reserve(split_backend, &split->graph, sched->alloc_buffers);
if (ec != GGML_STATUS_SUCCESS) {
return false;
}
}
}
ggml_backend_sched_reset(sched);
return true;
@ -1656,14 +1701,17 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
struct ggml_allocr_buffer_status allocr_status = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
struct ggml_backend_buffer_status status = {allocr_status.size, allocr_status.allocated};
size_t size = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
return status;
if (backend->iface.buffer_size != NULL) {
size += backend->iface.buffer_size(backend);
}
return size;
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {

View File

@ -35,6 +35,31 @@
#include "vendors/cuda.h"
#endif // defined(GGML_USE_HIP)
extern bool reserving_graph;
// If we are reserving the graph, pointers might be invalid and will fail if cudaMemcpyAsync tries to validate them.
// However, since we don't actually expect a result, we don't need to actually do the memcpy.
static cudaError_t cudaMemcpyAsyncReserve ( void* dst, const void* src, size_t count, cudaMemcpyKind kind, cudaStream_t stream = 0 ) {
if (!reserving_graph) {
return cudaMemcpyAsync(dst, src, count, kind, stream);
} else {
return cudaSuccess;
}
}
static cudaError_t cudaMemcpy2DAsyncReserve ( void* dst, size_t dpitch, const void* src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream = 0 ) {
if (!reserving_graph) {
return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, kind, stream);
} else {
return cudaSuccess;
}
}
#undef cudaMemcpyAsync
#define cudaMemcpyAsync cudaMemcpyAsyncReserve
#undef cudaMemcpy2DAsync
#define cudaMemcpy2DAsync cudaMemcpy2DAsyncReserve
#define STRINGIZE_IMPL(...) #__VA_ARGS__
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
@ -771,6 +796,9 @@ struct ggml_cuda_pool {
virtual void * alloc(size_t size, size_t * actual_size) = 0;
virtual void free(void * ptr, size_t size) = 0;
virtual bool alloc_memory() = 0;
virtual size_t alloc_size() = 0;
};
template<typename T>
@ -914,11 +942,11 @@ struct ggml_backend_cuda_context {
// pool
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device, bool alloc);
ggml_cuda_pool & pool(int device) {
if (pools[device] == nullptr) {
pools[device] = new_pool_for_device(device);
pools[device] = new_pool_for_device(device, true);
}
return *pools[device];
}
@ -926,4 +954,20 @@ struct ggml_backend_cuda_context {
ggml_cuda_pool & pool() {
return pool(device);
}
void pool_set_alloc(bool alloc) {
GGML_ASSERT(pools[device] == nullptr || pools[device]->alloc_memory() == alloc);
if (pools[device] == nullptr) {
pools[device] = new_pool_for_device(device, alloc);
}
}
size_t pool_get_alloc_size() {
if (pools[device] == nullptr) {
return 0;
}
return pools[device]->alloc_size();
}
};

View File

@ -279,6 +279,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
#if defined(GGML_USE_HIP)
if (std::getenv("GGML_CUDA_INIT") != NULL) {
GGML_LOG_INFO("%s: initializing rocBLAS on device %d\n", __func__, id);
CUDA_CHECK(cudaSetDevice(id));
// rocblas_initialize will SIGABRT if the GPU isn't supported
rocblas_initialize();
GGML_LOG_INFO("%s: rocBLAS initialized on device %d\n", __func__, id);
}
#endif
#if defined(GGML_USE_VMM)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
@ -332,9 +342,15 @@ static ggml_cuda_device_info ggml_cuda_init() {
#else
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
#ifdef __CUDA_ARCH_LIST__
if (std::getenv("GGML_CUDA_INIT") != NULL) {
GGML_ASSERT(ggml_cuda_has_arch(info.devices[id].cc) && "ggml was not compiled with support for this arch");
}
#endif // defined(__CUDA_ARCH_LIST__)
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
ggml_cuda_parse_uuid(prop, id).c_str());
#endif // defined(GGML_USE_HIP)
}
@ -355,6 +371,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
// #define DEBUG_CUDA_MALLOC
#define CUDA_ALIGNMENT 128
// buffer pool for cuda (legacy)
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
static const int MAX_BUFFERS = 256;
@ -367,9 +385,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
size_t pool_size = 0;
bool allocate = true;
size_t last_alloc = 0;
explicit ggml_cuda_pool_leg(int device) :
device(device) {
explicit ggml_cuda_pool_leg(int device, bool alloc) :
device(device),
allocate(alloc) {
}
~ggml_cuda_pool_leg() {
@ -377,7 +398,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer & b = buffer_pool[i];
if (b.ptr != nullptr) {
CUDA_CHECK(cudaFree(b.ptr));
if (allocate) {
CUDA_CHECK(cudaFree(b.ptr));
}
pool_size -= b.size;
}
}
@ -425,8 +448,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
void * ptr;
size_t look_ahead_size = (size_t) (1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
ggml_cuda_set_device(device);
CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
if (allocate) {
ggml_cuda_set_device(device);
if (ggml_cuda_device_malloc(&ptr, look_ahead_size, device) != cudaSuccess) {
last_alloc = look_ahead_size;
throw std::bad_alloc();
}
} else {
ptr = (void *)CUDA_ALIGNMENT;
}
*actual_size = look_ahead_size;
pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC
@ -446,10 +476,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
}
}
GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
ggml_cuda_set_device(device);
CUDA_CHECK(cudaFree(ptr));
if (allocate) {
ggml_cuda_set_device(device);
CUDA_CHECK(cudaFree(ptr));
}
pool_size -= size;
}
bool alloc_memory() override {
return allocate;
}
size_t alloc_size() override {
return pool_size + last_alloc;
}
};
// pool with virtual memory
@ -461,18 +501,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
CUdeviceptr pool_addr = 0;
size_t pool_used = 0;
size_t pool_size = 0;
bool allocate = true;
size_t last_alloc = 0;
size_t granularity;
#if defined(GGML_USE_HIP)
std::vector<std::pair<CUdeviceptr, size_t>> mappings;
#endif
explicit ggml_cuda_pool_vmm(int device) :
explicit ggml_cuda_pool_vmm(int device, bool alloc) :
device(device),
granularity(ggml_cuda_info().devices[device].vmm_granularity) {
granularity(ggml_cuda_info().devices[device].vmm_granularity),
allocate(alloc) {
if (!allocate) {
pool_addr = (CUdeviceptr)CUDA_ALIGNMENT;
}
}
~ggml_cuda_pool_vmm() {
if (pool_addr != 0) {
if (pool_addr != 0 && allocate) {
#if defined(GGML_USE_HIP)
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
@ -499,36 +545,50 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
// allocate more physical memory
CUmemAllocationProp prop = {};
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = device;
CUmemGenericAllocationHandle handle;
CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
if (allocate) {
// allocate more physical memory
CUmemAllocationProp prop = {};
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = device;
CUmemGenericAllocationHandle handle;
if (cuMemCreate(&handle, reserve_size, &prop, 0) != CUDA_SUCCESS) {
last_alloc = reserve_size;
throw std::bad_alloc();
}
// reserve virtual address space (if not already reserved)
if (pool_addr == 0) {
CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
// reserve virtual address space (if not already reserved)
if (pool_addr == 0) {
CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
}
// map at the end of the pool
CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
if (cuMemMap(start_ptr, reserve_size, 0, handle, 0) != CUDA_SUCCESS) {
last_alloc = reserve_size;
CU_CHECK(cuMemRelease(handle));
throw std::bad_alloc();
}
// the memory allocation handle is no longer needed after mapping
CU_CHECK(cuMemRelease(handle));
// set access
CUmemAccessDesc access = {};
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
access.location.id = device;
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
if (cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1) != CUDA_SUCCESS) {
CU_CHECK(cuMemUnmap(start_ptr, reserve_size));
last_alloc = reserve_size;
throw std::bad_alloc();
}
#if defined(GGML_USE_HIP)
mappings.push_back({start_ptr, reserve_size});
#endif
}
// map at the end of the pool
CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0));
#if defined(GGML_USE_HIP)
mappings.push_back({start_ptr, reserve_size});
#endif
// the memory allocation handle is no longer needed after mapping
CU_CHECK(cuMemRelease(handle));
// set access
CUmemAccessDesc access = {};
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
access.location.id = device;
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1));
// add to the pool
pool_size += reserve_size;
@ -560,16 +620,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
// all deallocations must be in reverse order of the allocations
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
}
bool alloc_memory() override {
return allocate;
}
size_t alloc_size() override {
return pool_size + last_alloc;
}
};
#endif // defined(GGML_USE_VMM)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device, bool alloc) {
#if defined(GGML_USE_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device, alloc));
}
#endif // defined(GGML_USE_VMM)
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device, alloc));
}
// destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error
@ -753,11 +821,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
}
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
return CUDA_ALIGNMENT;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_noalloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
void * dev_ptr = (void *)ggml_backend_cuda_buffer_type_get_alignment(buft);
ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
return ggml_backend_buffer_init(buft, {}, ctx, size);
}
static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
@ -781,6 +858,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
/* .noalloc_buffer = */ ggml_backend_cuda_buffer_type_noalloc_buffer,
};
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
@ -2941,6 +3019,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
@ -2956,6 +3035,11 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
continue;
}
// When reserving, we are forcing CUDA graphs but this operation is not graph-safe so we need to skip it
if (reserving_graph && node->op == GGML_OP_MUL_MAT_ID && node->ne[2] != 1) {
continue;
}
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion) {
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
@ -3027,6 +3111,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
cuda_ctx->pool_set_alloc(true);
ggml_cuda_set_device(cuda_ctx->device);
@ -3106,6 +3191,71 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
return GGML_STATUS_SUCCESS;
}
// This is used to skip operations that are not graph safe during the reservation process.
bool reserving_graph = false;
static enum ggml_status ggml_backend_cuda_graph_reserve(ggml_backend_t backend, ggml_cgraph * cgraph, bool alloc) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
cuda_ctx->pool_set_alloc(alloc);
#ifdef USE_CUDA_GRAPH
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
#endif
ggml_cuda_set_device(cuda_ctx->device);
{
std::lock_guard<std::mutex> lock(ggml_cuda_lock);
ggml_cuda_lock_counter.fetch_add(1, std::memory_order_relaxed);
}
reserving_graph = true;
// Create CuBLAS handles early to avoid synchronous allocations during graph capture.
cuda_ctx->cublas_handle();
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
enum ggml_status result = GGML_STATUS_SUCCESS;
try {
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
bool graph_evaluated_or_captured = false;
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
} catch (const std::exception &e) {
result = GGML_STATUS_FAILED;
}
cudaGraph_t graph;
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &graph));
CUDA_CHECK(cudaGraphDestroy(graph));
reserving_graph = false;
{
std::lock_guard<std::mutex> lock(ggml_cuda_lock);
if (ggml_cuda_lock_counter.fetch_sub(1, std::memory_order_relaxed) == 1) {
ggml_cuda_lock_cv.notify_all();
}
}
return result;
}
static size_t ggml_backend_cuda_buffer_size(ggml_backend_t backend) {
ggml_backend_cuda_context * ctx = (ggml_backend_cuda_context *)backend->context;
return ctx->pool_get_alloc_size();
}
static void ggml_backend_cuda_reset(ggml_backend_t backend) {
ggml_backend_cuda_context * ctx = (ggml_backend_cuda_context *)backend->context;
ctx->pools[ctx->device] = NULL;
}
static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
@ -3145,6 +3295,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
/* .graph_reserve = */ ggml_backend_cuda_graph_reserve,
/* .buffer_size = */ ggml_backend_cuda_buffer_size,
/* .reset = */ ggml_backend_cuda_reset,
};
static ggml_guid_t ggml_backend_cuda_guid() {
@ -3215,6 +3368,14 @@ struct ggml_backend_cuda_device_context {
std::string name;
std::string description;
std::string id;
int major;
int minor;
int driver_major;
int driver_minor;
int integrated;
int pci_bus_id;
int pci_device_id;
int pci_domain_id;
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@ -3235,6 +3396,28 @@ static const char * ggml_backend_cuda_device_get_id(ggml_backend_dev_t dev) {
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_cuda_set_device(ctx->device);
#if defined(GGML_USE_HIP)
if (ggml_hip_mgmt_init() == 0) {
int status = ggml_hip_get_device_memory(ctx->pci_bus_id, ctx->pci_device_id, free, total);
if (status == 0) {
GGML_LOG_DEBUG("%s utilizing ADLX memory reporting free: %zu total: %zu\n", __func__, *free, *total);
ggml_hip_mgmt_release();
return;
}
ggml_hip_mgmt_release();
}
#else
if (ggml_nvml_init() == 0) {
int status = ggml_nvml_get_device_memory(ctx->id.c_str(), free, total);
if (status == 0) {
GGML_LOG_DEBUG("%s utilizing NVML memory reporting free: %zu total: %zu\n", __func__, *free, *total);
ggml_nvml_release();
return;
}
ggml_nvml_release();
}
#endif
CUDA_CHECK(cudaMemGetInfo(free, total));
}
@ -3243,6 +3426,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
#define GGML_HIP_NAME "HIP"
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_cuda_device_get_name(dev);
props->description = ggml_backend_cuda_device_get_description(dev);
@ -3253,6 +3437,23 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
// If you need the memory data, call ggml_backend_dev_memory() explicitly.
props->memory_total = props->memory_free = 0;
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
#if defined(GGML_USE_HIP)
int cc = ggml_cuda_info().devices[ctx->device].cc - GGML_CUDA_CC_OFFSET_AMD;
props->compute_major = cc / 0x100;
props->compute_minor = cc - (props->compute_major * 0x100);
#else
props->compute_major = ctx->major;
props->compute_minor = ctx->minor;
#endif
props->driver_major = ctx->driver_major;
props->driver_minor = ctx->driver_minor;
props->integrated = ctx->integrated;
props->pci_bus_id = ctx->pci_bus_id;
props->pci_device_id = ctx->pci_device_id;
props->pci_domain_id = ctx->pci_domain_id;
props->library = GGML_CUDA_NAME;
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
bool events = false;
@ -3843,6 +4044,8 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
int driverVersion = 0;
CUDA_CHECK(cudaDriverGetVersion(&driverVersion));
for (int i = 0; i < ggml_cuda_info().device_count; i++) {
ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
@ -3853,7 +4056,14 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
dev_ctx->id = ggml_cuda_parse_uuid(prop, i);
dev_ctx->major = prop.major;
dev_ctx->minor = prop.minor;
dev_ctx->driver_major = driverVersion / 1000;
dev_ctx->driver_minor = (driverVersion - (dev_ctx->driver_major * 1000)) / 10;
dev_ctx->integrated = prop.integrated;
dev_ctx->pci_bus_id = prop.pciBusID;
dev_ctx->pci_device_id = prop.pciDeviceID;
dev_ctx->pci_domain_id = prop.pciDomainID;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,
/* .reg = */ &reg,

View File

@ -1,18 +1,19 @@
#include "scale.cuh"
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
#define MAX_GRIDDIM_X 0x7FFFFFFF
if (i >= k) {
return;
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int64_t nelements) {
int64_t tid = (int64_t)blockIdx.x * (int64_t)blockDim.x + (int64_t)threadIdx.x;
int64_t stride = (int64_t)blockDim.x * (int64_t)gridDim.x;
for (int64_t i = tid; i < nelements; i += stride) {
dst[i] = scale * x[i] + bias;
}
dst[i] = scale * x[i] + bias;
}
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, k);
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int64_t nelements, cudaStream_t stream) {
const int64_t num_blocks = (nelements + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<MIN(MAX_GRIDDIM_X, num_blocks), CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, nelements);
}
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@ -42,6 +42,7 @@
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceReset hipDeviceReset
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaDriverGetVersion hipDriverGetVersion
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled

View File

@ -602,6 +602,14 @@ static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx
return true;
}
// Management libraries for fetching more accurate free VRAM data
GGML_API int ggml_nvml_init();
GGML_API int ggml_nvml_get_device_memory(const char *uuid, size_t *free, size_t *total);
GGML_API void ggml_nvml_release();
GGML_API int ggml_hip_mgmt_init();
GGML_API int ggml_hip_get_device_memory(int pci_bus_id, int pci_device_id, size_t *free, size_t *total);
GGML_API void ggml_hip_mgmt_release();
#ifdef __cplusplus
}
#endif

View File

@ -6523,12 +6523,14 @@ static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backen
GGML_UNUSED(dev);
}
#define GGML_METAL_NAME "Metal"
static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_metal_device_get_name(dev);
props->description = ggml_backend_metal_device_get_description(dev);
props->id = "0";
props->type = ggml_backend_metal_device_get_type(dev);
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->library = GGML_METAL_NAME;
props->caps = (struct ggml_backend_dev_caps) {
/* .async = */ false,
/* .host_buffer = */ false,

View File

@ -75,9 +75,9 @@ var OnceLoad = sync.OnceFunc(func() {
paths = value
}
split := filepath.SplitList(paths)
visited := make(map[string]struct{}, len(split))
for _, path := range split {
libPaths = filepath.SplitList(paths)
visited := make(map[string]struct{}, len(libPaths))
for _, path := range libPaths {
abspath, err := filepath.Abs(path)
if err != nil {
slog.Error("failed to get absolute path", "error", err)
@ -104,6 +104,12 @@ var OnceLoad = sync.OnceFunc(func() {
slog.Info("system", "", system{})
})
var libPaths []string
func LibPaths() []string {
return libPaths
}
type system struct{}
func (system) LogValue() slog.Value {

449
ml/backend/ggml/ggml/src/mem_hip.cpp vendored Normal file
View File

@ -0,0 +1,449 @@
#include "ggml.h"
#ifdef _WIN32
// AMD Device Library eXtra (ADLX)
//
// https://github.com/GPUOpen-LibrariesAndSDKs/ADLX
//
// This Windows-only library provides accurate VRAM reporting for AMD GPUs.
// The runtime DLL is installed with every AMD Driver on Windows, however
// the SDK isn't a part of the HIP SDK packaging. As such, we avoid including
// the headers from the SDK to simplify building from source.
//
// ADLX relies heavily on function pointer tables.
// Only the minimal set of types are defined below to facilitate
// finding the target AMD GPU(s) and querying their current VRAM usage
// Unused function parameters are commented out to avoid unnecessary type
// definitions.
#include "ggml-impl.h"
#include <filesystem>
#include <mutex>
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
namespace fs = std::filesystem;
#include <stdio.h>
#include <stdint.h>
// Begin minimal ADLX definitions - derived from tag v1.0 (Dec 2022)
typedef uint64_t adlx_uint64;
typedef uint32_t adlx_uint32;
typedef int32_t adlx_int32;
typedef adlx_int32 adlx_int;
typedef adlx_uint32 adlx_uint;
typedef long adlx_long;
typedef uint8_t adlx_uint8;
typedef enum
{
ADLX_OK = 0, /**< @ENG_START_DOX This result indicates success. @ENG_END_DOX */
ADLX_ALREADY_ENABLED, /**< @ENG_START_DOX This result indicates that the asked action is already enabled. @ENG_END_DOX */
ADLX_ALREADY_INITIALIZED, /**< @ENG_START_DOX This result indicates that ADLX has a unspecified type of initialization. @ENG_END_DOX */
ADLX_FAIL, /**< @ENG_START_DOX This result indicates an unspecified failure. @ENG_END_DOX */
ADLX_INVALID_ARGS, /**< @ENG_START_DOX This result indicates that the arguments are invalid. @ENG_END_DOX */
ADLX_BAD_VER, /**< @ENG_START_DOX This result indicates that the asked version is incompatible with the current version. @ENG_END_DOX */
ADLX_UNKNOWN_INTERFACE, /**< @ENG_START_DOX This result indicates that an unknown interface was asked. @ENG_END_DOX */
ADLX_TERMINATED, /**< @ENG_START_DOX This result indicates that the calls were made in an interface after ADLX was terminated. @ENG_END_DOX */
ADLX_ADL_INIT_ERROR, /**< @ENG_START_DOX This result indicates that the ADL initialization failed. @ENG_END_DOX */
ADLX_NOT_FOUND, /**< @ENG_START_DOX This result indicates that the item is not found. @ENG_END_DOX */
ADLX_INVALID_OBJECT, /**< @ENG_START_DOX This result indicates that the method was called into an invalid object. @ENG_END_DOX */
ADLX_ORPHAN_OBJECTS, /**< @ENG_START_DOX This result indicates that ADLX was terminated with outstanding ADLX objects. Any interface obtained from ADLX points to invalid memory and calls in their methods will result in unexpected behavior. @ENG_END_DOX */
ADLX_NOT_SUPPORTED, /**< @ENG_START_DOX This result indicates that the asked feature is not supported. @ENG_END_DOX */
ADLX_PENDING_OPERATION, /**< @ENG_START_DOX This result indicates a failure due to an operation currently in progress. @ENG_END_DOX */
ADLX_GPU_INACTIVE /**< @ENG_START_DOX This result indicates that the GPU is inactive. @ENG_END_DOX */
} ADLX_RESULT;
#define ADLX_SUCCEEDED(x) (ADLX_OK == (x) || ADLX_ALREADY_ENABLED == (x) || ADLX_ALREADY_INITIALIZED == (x))
#define ADLX_FAILED(x) (ADLX_OK != (x) && ADLX_ALREADY_ENABLED != (x) && ADLX_ALREADY_INITIALIZED != (x))
#define ADLX_VER_MAJOR 1
#define ADLX_VER_MINOR 0
#define ADLX_VER_RELEASE 5
#define ADLX_VER_BUILD_NUM 30
#define ADLX_MAKE_FULL_VER(VERSION_MAJOR, VERSION_MINOR, VERSION_RELEASE, VERSION_BUILD_NUM) ( ((adlx_uint64)(VERSION_MAJOR) << 48ull) | ((adlx_uint64)(VERSION_MINOR) << 32ull) | ((adlx_uint64)(VERSION_RELEASE) << 16ull) | (adlx_uint64)(VERSION_BUILD_NUM))
#define ADLX_FULL_VERSION ADLX_MAKE_FULL_VER(ADLX_VER_MAJOR, ADLX_VER_MINOR, ADLX_VER_RELEASE, ADLX_VER_BUILD_NUM)
#define ADLX_CORE_LINK __declspec(dllexport)
#define ADLX_STD_CALL __stdcall
#define ADLX_CDECL_CALL __cdecl
#define ADLX_FAST_CALL __fastcall
#define ADLX_INLINE __inline
#define ADLX_FORCEINLINE __forceinline
#define ADLX_NO_VTABLE __declspec(novtable)
#if defined(__cplusplus)
typedef bool adlx_bool;
#else
typedef adlx_uint8 adlx_bool;
#define true 1
#define false 0
#endif
typedef struct IADLXSystem IADLXSystem;
typedef struct IADLXGPUList IADLXGPUList;
typedef struct IADLXGPU IADLXGPU;
typedef struct IADLXInterface IADLXInterface;
typedef struct IADLXPerformanceMonitoringServices IADLXPerformanceMonitoringServices;
typedef struct IADLXGPUMetrics IADLXGPUMetrics;
typedef struct IADLXGPUMetricsSupport IADLXGPUMetricsSupport;
typedef struct IADLXSystemVtbl
{
// IADLXSystem interface
ADLX_RESULT (ADLX_STD_CALL *GetHybridGraphicsType)(/* IADLXSystem* pThis, ADLX_HG_TYPE* hgType */);
ADLX_RESULT (ADLX_STD_CALL *GetGPUs)(IADLXSystem* pThis, IADLXGPUList** ppGPUs); // Used
ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXSystem* pThis, const wchar_t* interfaceId, void** ppInterface */);
ADLX_RESULT (ADLX_STD_CALL *GetDisplaysServices)(/* IADLXSystem* pThis, IADLXDisplayServices** ppDispServices */);
ADLX_RESULT (ADLX_STD_CALL *GetDesktopsServices)(/* IADLXSystem* pThis, IADLXDesktopServices** ppDeskServices */);
ADLX_RESULT (ADLX_STD_CALL *GetGPUsChangedHandling)(/* IADLXSystem* pThis, IADLXGPUsChangedHandling** ppGPUsChangedHandling */);
ADLX_RESULT (ADLX_STD_CALL *EnableLog)(/* IADLXSystem* pThis, ADLX_LOG_DESTINATION mode, ADLX_LOG_SEVERITY severity, IADLXLog* pLogger, const wchar_t* fileName */);
ADLX_RESULT (ADLX_STD_CALL *Get3DSettingsServices)(/* IADLXSystem* pThis, IADLX3DSettingsServices** pp3DSettingsServices */);
ADLX_RESULT (ADLX_STD_CALL *GetGPUTuningServices)(/* IADLXSystem* pThis, IADLXGPUTuningServices** ppGPUTuningServices */);
ADLX_RESULT (ADLX_STD_CALL *GetPerformanceMonitoringServices)(IADLXSystem* pThis, IADLXPerformanceMonitoringServices** ppPerformanceMonitoringServices); // Used
ADLX_RESULT (ADLX_STD_CALL *TotalSystemRAM)(/* IADLXSystem* pThis, adlx_uint* ramMB */);
ADLX_RESULT (ADLX_STD_CALL *GetI2C)(/* IADLXSystem* pThis, IADLXGPU* pGPU, IADLXI2C** ppI2C */);
} IADLXSystemVtbl;
struct IADLXSystem { const IADLXSystemVtbl *pVtbl; };
typedef struct IADLXGPUVtbl
{
//IADLXInterface
adlx_long (ADLX_STD_CALL *Acquire)(/* IADLXGPU* pThis */);
adlx_long (ADLX_STD_CALL *Release)(IADLXGPU* pThis); // Used
ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXGPU* pThis, const wchar_t* interfaceId, void** ppInterface */);
//IADLXGPU
ADLX_RESULT (ADLX_STD_CALL *VendorId)(/* IADLXGPU* pThis, const char** vendorId */);
ADLX_RESULT (ADLX_STD_CALL *ASICFamilyType)(/* IADLXGPU* pThis, ADLX_ASIC_FAMILY_TYPE* asicFamilyType */);
ADLX_RESULT (ADLX_STD_CALL *Type)(/* IADLXGPU* pThis, ADLX_GPU_TYPE* gpuType */);
ADLX_RESULT (ADLX_STD_CALL *IsExternal)(/* IADLXGPU* pThis, adlx_bool* isExternal */);
ADLX_RESULT (ADLX_STD_CALL *Name)(/* IADLXGPU* pThis, const char** gpuName */);
ADLX_RESULT (ADLX_STD_CALL *DriverPath)(/* IADLXGPU* pThis, const char** driverPath */);
ADLX_RESULT (ADLX_STD_CALL *PNPString)(/* IADLXGPU* pThis, const char** pnpString */);
ADLX_RESULT (ADLX_STD_CALL *HasDesktops)(/* IADLXGPU* pThis, adlx_bool* hasDesktops */);
ADLX_RESULT (ADLX_STD_CALL *TotalVRAM)(IADLXGPU* pThis, adlx_uint* vramMB); // Used
ADLX_RESULT (ADLX_STD_CALL *VRAMType)(/* IADLXGPU* pThis, const char** type */);
ADLX_RESULT (ADLX_STD_CALL *BIOSInfo)(/* IADLXGPU* pThis, const char** partNumber, const char** version, const char** date */);
ADLX_RESULT (ADLX_STD_CALL *DeviceId)(/* IADLXGPU* pThis, const char** deviceId */);
ADLX_RESULT (ADLX_STD_CALL *RevisionId)(/* IADLXGPU* pThis, const char** revisionId */);
ADLX_RESULT (ADLX_STD_CALL *SubSystemId)(/* IADLXGPU* pThis, const char** subSystemId */);
ADLX_RESULT (ADLX_STD_CALL *SubSystemVendorId)(/* IADLXGPU* pThis, const char** subSystemVendorId */);
ADLX_RESULT (ADLX_STD_CALL *UniqueId)(IADLXGPU* pThis, adlx_int* uniqueId); // Used
} IADLXGPUVtbl;
struct IADLXGPU { const IADLXGPUVtbl *pVtbl; };
typedef struct IADLXGPUListVtbl
{
//IADLXInterface
adlx_long (ADLX_STD_CALL *Acquire)(/* IADLXGPUList* pThis */);
adlx_long (ADLX_STD_CALL *Release)(IADLXGPUList* pThis); // Used
ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXGPUList* pThis, const wchar_t* interfaceId, void** ppInterface */);
//IADLXList
adlx_uint (ADLX_STD_CALL *Size)(/* IADLXGPUList* pThis */);
adlx_uint8 (ADLX_STD_CALL *Empty)(/* IADLXGPUList* pThis */);
adlx_uint (ADLX_STD_CALL *Begin)(IADLXGPUList* pThis); // Used
adlx_uint (ADLX_STD_CALL *End)(IADLXGPUList* pThis); // Used
ADLX_RESULT (ADLX_STD_CALL *At)(/* IADLXGPUList* pThis, const adlx_uint location, IADLXInterface** ppItem */);
ADLX_RESULT (ADLX_STD_CALL *Clear)(/* IADLXGPUList* pThis */);
ADLX_RESULT (ADLX_STD_CALL *Remove_Back)(/* IADLXGPUList* pThis */);
ADLX_RESULT (ADLX_STD_CALL *Add_Back)(/* IADLXGPUList* pThis, IADLXInterface* pItem */);
//IADLXGPUList
ADLX_RESULT (ADLX_STD_CALL *At_GPUList)(IADLXGPUList* pThis, const adlx_uint location, IADLXGPU** ppItem); // Used
ADLX_RESULT (ADLX_STD_CALL *Add_Back_GPUList)(/* IADLXGPUList* pThis, IADLXGPU* pItem */);
} IADLXGPUListVtbl;
struct IADLXGPUList { const IADLXGPUListVtbl *pVtbl; };
typedef struct IADLXPerformanceMonitoringServicesVtbl
{
//IADLXInterface
adlx_long (ADLX_STD_CALL *Acquire)(/* IADLXPerformanceMonitoringServices* pThis */);
adlx_long (ADLX_STD_CALL *Release)(IADLXPerformanceMonitoringServices* pThis); // Used
ADLX_RESULT (ADLX_STD_CALL *QueryInterface)(/* IADLXPerformanceMonitoringServices* pThis, const wchar_t* interfaceId, void** ppInterface */);
//IADLXPerformanceMonitoringServices
ADLX_RESULT (ADLX_STD_CALL *GetSamplingIntervalRange)(/* IADLXPerformanceMonitoringServices* pThis, ADLX_IntRange* range */);
ADLX_RESULT (ADLX_STD_CALL *SetSamplingInterval)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int intervalMs */);
ADLX_RESULT (ADLX_STD_CALL *GetSamplingInterval)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int* intervalMs */);
ADLX_RESULT (ADLX_STD_CALL *GetMaxPerformanceMetricsHistorySizeRange)(/* IADLXPerformanceMonitoringServices* pThis, ADLX_IntRange* range */);
ADLX_RESULT (ADLX_STD_CALL *SetMaxPerformanceMetricsHistorySize)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int sizeSec */);
ADLX_RESULT (ADLX_STD_CALL *GetMaxPerformanceMetricsHistorySize)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int* sizeSec */);
ADLX_RESULT (ADLX_STD_CALL *ClearPerformanceMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis */);
ADLX_RESULT (ADLX_STD_CALL *GetCurrentPerformanceMetricsHistorySize)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int* sizeSec */);
ADLX_RESULT (ADLX_STD_CALL *StartPerformanceMetricsTracking)(/* IADLXPerformanceMonitoringServices* pThis */);
ADLX_RESULT (ADLX_STD_CALL *StopPerformanceMetricsTracking)(/* IADLXPerformanceMonitoringServices* pThis */);
ADLX_RESULT (ADLX_STD_CALL *GetAllMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int startMs, adlx_int stopMs, IADLXAllMetricsList** ppMetricsList */);
ADLX_RESULT (ADLX_STD_CALL *GetGPUMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis, IADLXGPU* pGPU, adlx_int startMs, adlx_int stopMs, IADLXGPUMetricsList** ppMetricsList */);
ADLX_RESULT (ADLX_STD_CALL *GetSystemMetricsHistory)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int startMs, adlx_int stopMs, IADLXSystemMetricsList** ppMetricsList */);
ADLX_RESULT (ADLX_STD_CALL *GetFPSHistory)(/* IADLXPerformanceMonitoringServices* pThis, adlx_int startMs, adlx_int stopMs, IADLXFPSList** ppMetricsList */);
ADLX_RESULT (ADLX_STD_CALL *GetCurrentAllMetrics)(/* IADLXPerformanceMonitoringServices* pThis, IADLXAllMetrics** ppMetrics */);
ADLX_RESULT (ADLX_STD_CALL *GetCurrentGPUMetrics)(IADLXPerformanceMonitoringServices* pThis, IADLXGPU* pGPU, IADLXGPUMetrics** ppMetrics); // Used
ADLX_RESULT (ADLX_STD_CALL *GetCurrentSystemMetrics)(/* IADLXPerformanceMonitoringServices* pThis, IADLXSystemMetrics** ppMetrics */);
ADLX_RESULT (ADLX_STD_CALL *GetCurrentFPS)(/* IADLXPerformanceMonitoringServices* pThis, IADLXFPS** ppMetrics */);
ADLX_RESULT (ADLX_STD_CALL *GetSupportedGPUMetrics)(IADLXPerformanceMonitoringServices* pThis, IADLXGPU* pGPU, IADLXGPUMetricsSupport** ppMetricsSupported); // Used
ADLX_RESULT (ADLX_STD_CALL *GetSupportedSystemMetrics)(/* IADLXPerformanceMonitoringServices* pThis, IADLXSystemMetricsSupport** ppMetricsSupported */);
}IADLXPerformanceMonitoringServicesVtbl;
struct IADLXPerformanceMonitoringServices { const IADLXPerformanceMonitoringServicesVtbl *pVtbl; };
typedef struct IADLXGPUMetricsSupportVtbl
{
//IADLXInterface
adlx_long (ADLX_STD_CALL* Acquire)(/* IADLXGPUMetricsSupport* pThis */);
adlx_long (ADLX_STD_CALL* Release)(IADLXGPUMetricsSupport* pThis); // Used
ADLX_RESULT (ADLX_STD_CALL* QueryInterface)(/* IADLXGPUMetricsSupport* pThis, const wchar_t* interfaceId, void** ppInterface */);
//IADLXGPUMetricsSupport
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUUsage)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUClockSpeed)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUVRAMClockSpeed)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUTemperature)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUHotspotTemperature)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUPower)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUTotalBoardPower)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUFanSpeed)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUVRAM)(IADLXGPUMetricsSupport* pThis, adlx_bool* supported); // Used
ADLX_RESULT (ADLX_STD_CALL* IsSupportedGPUVoltage)(/* IADLXGPUMetricsSupport* pThis, adlx_bool* supported */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUUsageRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUClockSpeedRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUVRAMClockSpeedRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUTemperatureRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUHotspotTemperatureRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUPowerRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUFanSpeedRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUVRAMRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUVoltageRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
ADLX_RESULT (ADLX_STD_CALL* GetGPUTotalBoardPowerRange)(/* IADLXGPUMetricsSupport* pThis, adlx_int* minValue, adlx_int* maxValue */);
} IADLXGPUMetricsSupportVtbl;
struct IADLXGPUMetricsSupport { const IADLXGPUMetricsSupportVtbl *pVtbl; };
typedef struct IADLXGPUMetricsVtbl
{
//IADLXInterface
adlx_long (ADLX_STD_CALL* Acquire)(/* IADLXGPUMetrics* pThis */);
adlx_long (ADLX_STD_CALL* Release)(IADLXGPUMetrics* pThis); // Used
ADLX_RESULT (ADLX_STD_CALL* QueryInterface)(/* IADLXGPUMetrics* pThis, const wchar_t* interfaceId, void** ppInterface */);
//IADLXGPUMetrics
ADLX_RESULT (ADLX_STD_CALL* TimeStamp)(/* IADLXGPUMetrics* pThis, adlx_int64* ms */);
ADLX_RESULT (ADLX_STD_CALL* GPUUsage)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUClockSpeed)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUVRAMClockSpeed)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUTemperature)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUHotspotTemperature)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUPower)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUTotalBoardPower)(/* IADLXGPUMetrics* pThis, adlx_double* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUFanSpeed)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
ADLX_RESULT (ADLX_STD_CALL* GPUVRAM)(IADLXGPUMetrics* pThis, adlx_int* data); // Used
ADLX_RESULT (ADLX_STD_CALL* GPUVoltage)(/* IADLXGPUMetrics* pThis, adlx_int* data */);
} IADLXGPUMetricsVtbl;
struct IADLXGPUMetrics { const IADLXGPUMetricsVtbl *pVtbl; };
struct {
void *handle;
ADLX_RESULT (*ADLXInitialize)(adlx_uint64 version, IADLXSystem** ppSystem);
ADLX_RESULT (*ADLXInitializeWithIncompatibleDriver)(adlx_uint64 version, IADLXSystem** ppSystem);
ADLX_RESULT (*ADLXQueryVersion)(const char** version);
ADLX_RESULT (*ADLXTerminate)();
IADLXSystem *sys;
} adlx { NULL, NULL, NULL, NULL, NULL, NULL };
static std::mutex ggml_adlx_lock;
extern "C" {
int ggml_hip_mgmt_init() {
std::lock_guard<std::mutex> lock(ggml_adlx_lock);
if (adlx.handle != NULL) {
// Already initialized
return 0;
}
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
fs::path libPath = fs::path("\\Windows") / fs::path("System32") / fs::path("amdadlx64.dll");
adlx.handle = (void*)LoadLibraryW(libPath.wstring().c_str());
if (adlx.handle == NULL) {
return ADLX_NOT_FOUND;
}
adlx.ADLXInitialize = (ADLX_RESULT (*)(adlx_uint64 version, IADLXSystem **ppSystem)) GetProcAddress((HMODULE)(adlx.handle), "ADLXInitialize");
adlx.ADLXInitializeWithIncompatibleDriver = (ADLX_RESULT (*)(adlx_uint64 version, IADLXSystem **ppSystem)) GetProcAddress((HMODULE)(adlx.handle), "ADLXInitializeWithIncompatibleDriver");
adlx.ADLXTerminate = (ADLX_RESULT (*)()) GetProcAddress((HMODULE)(adlx.handle), "ADLXTerminate");
adlx.ADLXQueryVersion = (ADLX_RESULT (*)(const char **version)) GetProcAddress((HMODULE)(adlx.handle), "ADLXQueryVersion");
if (adlx.ADLXInitialize == NULL || adlx.ADLXInitializeWithIncompatibleDriver == NULL || adlx.ADLXTerminate == NULL) {
GGML_LOG_INFO("%s unable to locate required symbols in amdadlx64.dll, falling back to hip free memory reporting", __func__);
FreeLibrary((HMODULE)(adlx.handle));
adlx.handle = NULL;
return ADLX_NOT_FOUND;
}
SetErrorMode(old_mode);
// Aid in troubleshooting...
if (adlx.ADLXQueryVersion != NULL) {
const char *version = NULL;
ADLX_RESULT status = adlx.ADLXQueryVersion(&version);
if (ADLX_SUCCEEDED(status)) {
GGML_LOG_DEBUG("%s located ADLX version %s\n", __func__, version);
}
}
ADLX_RESULT status = adlx.ADLXInitialize(ADLX_FULL_VERSION, &adlx.sys);
if (ADLX_FAILED(status)) {
// GGML_LOG_DEBUG("%s failed to initialize ADLX error=%d - attempting with incompatible driver...\n", __func__, status);
// Try with the incompatible driver
status = adlx.ADLXInitializeWithIncompatibleDriver(ADLX_FULL_VERSION, &adlx.sys);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s failed to initialize ADLX error=%d\n", __func__, status);
FreeLibrary((HMODULE)(adlx.handle));
adlx.handle = NULL;
adlx.sys = NULL;
return status;
}
// GGML_LOG_DEBUG("%s initialized ADLX with incpomatible driver\n", __func__);
}
return ADLX_OK;
}
void ggml_hip_mgmt_release() {
std::lock_guard<std::mutex> lock(ggml_adlx_lock);
if (adlx.handle == NULL) {
// Already free
return;
}
ADLX_RESULT status = adlx.ADLXTerminate();
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s failed to terminate Adlx %d\n", __func__, status);
// Unload anyway...
}
FreeLibrary((HMODULE)(adlx.handle));
adlx.handle = NULL;
}
#define adlx_gdm_cleanup \
if (gpuMetricsSupport != NULL) gpuMetricsSupport->pVtbl->Release(gpuMetricsSupport); \
if (gpuMetrics != NULL) gpuMetrics->pVtbl->Release(gpuMetrics); \
if (perfMonitoringServices != NULL) perfMonitoringServices->pVtbl->Release(perfMonitoringServices); \
if (gpus != NULL) gpus->pVtbl->Release(gpus); \
if (gpu != NULL) gpu->pVtbl->Release(gpu)
int ggml_hip_get_device_memory(int pci_bus_id, int pci_device_id, size_t *free, size_t *total) {
std::lock_guard<std::mutex> lock(ggml_adlx_lock);
if (adlx.handle == NULL) {
GGML_LOG_INFO("%s ADLX was not initialized\n", __func__);
return ADLX_ADL_INIT_ERROR;
}
IADLXGPUMetricsSupport *gpuMetricsSupport = NULL;
IADLXPerformanceMonitoringServices *perfMonitoringServices = NULL;
IADLXGPUList* gpus = NULL;
IADLXGPU* gpu = NULL;
IADLXGPUMetrics *gpuMetrics = NULL;
ADLX_RESULT status;
// The "UniqueID" exposed in ADLX is the PCI Bus and Device IDs
adlx_int target = (pci_bus_id << 8) | (pci_device_id & 0xff);
status = adlx.sys->pVtbl->GetPerformanceMonitoringServices(adlx.sys, &perfMonitoringServices);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s GetPerformanceMonitoringServices failed %d\n", __func__, status);
return status;
}
status = adlx.sys->pVtbl->GetGPUs(adlx.sys, &gpus);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s GetGPUs failed %d\n", __func__, status);
adlx_gdm_cleanup;
return status;
}
// Get GPU list
for (adlx_uint crt = gpus->pVtbl->Begin(gpus); crt != gpus->pVtbl->End(gpus); ++crt)
{
status = gpus->pVtbl->At_GPUList(gpus, crt, &gpu);
if (ADLX_FAILED(status))
{
GGML_LOG_INFO("%s %d] At_GPUList failed %d\n", __func__, crt, status);
continue;
}
adlx_int id;
status = gpu->pVtbl->UniqueId(gpu, &id);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s %d] UniqueId lookup failed %d\n", __func__, crt, status);
gpu->pVtbl->Release(gpu);
gpu = NULL;
continue;
}
if (id != target) {
GGML_LOG_DEBUG("%s %d] GPU UniqueId: %x does not match target %02x %02x\n", __func__, crt, id, pci_bus_id, pci_device_id);
gpu->pVtbl->Release(gpu);
gpu = NULL;
continue;
}
// Any failures at this point should cause a fall-back to other APIs
status = perfMonitoringServices->pVtbl->GetSupportedGPUMetrics(perfMonitoringServices, gpu, &gpuMetricsSupport);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s GetSupportedGPUMetrics failed %d\n", __func__, status);
adlx_gdm_cleanup;
return status;
}
status = perfMonitoringServices->pVtbl->GetCurrentGPUMetrics(perfMonitoringServices, gpu, &gpuMetrics);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s GetCurrentGPUMetrics failed %d\n", __func__, status);
adlx_gdm_cleanup;
return status;
}
adlx_bool supported = false;
status = gpuMetricsSupport->pVtbl->IsSupportedGPUVRAM(gpuMetricsSupport, &supported);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s IsSupportedGPUVRAM failed %d\n", __func__, status);
adlx_gdm_cleanup;
return status;
}
adlx_uint totalVRAM = 0;
status = gpu->pVtbl->TotalVRAM(gpu, &totalVRAM);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s TotalVRAM failed %d\n", __func__, status);
adlx_gdm_cleanup;
return status;
}
adlx_int usedVRAM = 0;
status = gpuMetrics->pVtbl->GPUVRAM(gpuMetrics, &usedVRAM);
if (ADLX_FAILED(status)) {
GGML_LOG_INFO("%s GPUVRAM failed %d\n", __func__, status);
adlx_gdm_cleanup;
return status;
}
*total = size_t(totalVRAM) * 1024 * 1024;
*free = size_t(totalVRAM-usedVRAM) * 1024 * 1024;
adlx_gdm_cleanup;
return ADLX_OK;
}
adlx_gdm_cleanup;
return ADLX_NOT_FOUND;
}
} // extern "C"
#else // #ifdef _WIN32
extern "C" {
// TODO Linux implementation of accurate VRAM reporting
int ggml_hip_mgmt_init() {
return -1;
}
void ggml_hip_mgmt_release() {}
int ggml_hip_get_device_memory(int pci_bus_id, int pci_device_id, size_t *free, size_t *total) {
return -1;
}
} // extern "C"
#endif // #ifdef _WIN32

172
ml/backend/ggml/ggml/src/mem_nvml.cpp vendored Normal file
View File

@ -0,0 +1,172 @@
// NVIDIA Management Library (NVML)
//
// https://developer.nvidia.com/management-library-nvml
//
// This library provides accurate VRAM reporting for NVIDIA GPUs, particularly
// on Windows, where the cuda library provides inaccurate VRAM usage metrics. The
// runtime DLL is installed with every driver on Windows, and most Linux
// systems, and the headers are included in the standard CUDA SDK install. As
// such, we can include the header here to simplify the code.
#include "ggml-impl.h"
#include <filesystem>
#include <mutex>
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#else
# include <dlfcn.h>
# include <unistd.h>
#endif
namespace fs = std::filesystem;
// Minimal definitions to avoid including the nvml.h header
typedef enum nvmlReturn_enum
{
// cppcheck-suppress *
NVML_SUCCESS = 0, //!< The operation was successful
NVML_ERROR_UNINITIALIZED = 1, //!< NVML was not first initialized with nvmlInit()
NVML_ERROR_INVALID_ARGUMENT = 2, //!< A supplied argument is invalid
NVML_ERROR_NOT_SUPPORTED = 3, //!< The requested operation is not available on target device
NVML_ERROR_NO_PERMISSION = 4, //!< The current user does not have permission for operation
NVML_ERROR_ALREADY_INITIALIZED = 5, //!< Deprecated: Multiple initializations are now allowed through ref counting
NVML_ERROR_NOT_FOUND = 6, //!< A query to find an object was unsuccessful
NVML_ERROR_INSUFFICIENT_SIZE = 7, //!< An input argument is not large enough
NVML_ERROR_INSUFFICIENT_POWER = 8, //!< A device's external power cables are not properly attached
NVML_ERROR_DRIVER_NOT_LOADED = 9, //!< NVIDIA driver is not loaded
NVML_ERROR_TIMEOUT = 10, //!< User provided timeout passed
NVML_ERROR_IRQ_ISSUE = 11, //!< NVIDIA Kernel detected an interrupt issue with a GPU
NVML_ERROR_LIBRARY_NOT_FOUND = 12, //!< NVML Shared Library couldn't be found or loaded
NVML_ERROR_FUNCTION_NOT_FOUND = 13, //!< Local version of NVML doesn't implement this function
NVML_ERROR_CORRUPTED_INFOROM = 14, //!< infoROM is corrupted
NVML_ERROR_GPU_IS_LOST = 15, //!< The GPU has fallen off the bus or has otherwise become inaccessible
NVML_ERROR_RESET_REQUIRED = 16, //!< The GPU requires a reset before it can be used again
NVML_ERROR_OPERATING_SYSTEM = 17, //!< The GPU control device has been blocked by the operating system/cgroups
NVML_ERROR_LIB_RM_VERSION_MISMATCH = 18, //!< RM detects a driver/library version mismatch
NVML_ERROR_IN_USE = 19, //!< An operation cannot be performed because the GPU is currently in use
NVML_ERROR_MEMORY = 20, //!< Insufficient memory
NVML_ERROR_NO_DATA = 21, //!< No data
NVML_ERROR_VGPU_ECC_NOT_SUPPORTED = 22, //!< The requested vgpu operation is not available on target device, becasue ECC is enabled
NVML_ERROR_INSUFFICIENT_RESOURCES = 23, //!< Ran out of critical resources, other than memory
NVML_ERROR_FREQ_NOT_SUPPORTED = 24, //!< Ran out of critical resources, other than memory
NVML_ERROR_ARGUMENT_VERSION_MISMATCH = 25, //!< The provided version is invalid/unsupported
NVML_ERROR_DEPRECATED = 26, //!< The requested functionality has been deprecated
NVML_ERROR_NOT_READY = 27, //!< The system is not ready for the request
NVML_ERROR_GPU_NOT_FOUND = 28, //!< No GPUs were found
NVML_ERROR_INVALID_STATE = 29, //!< Resource not in correct state to perform requested operation
NVML_ERROR_UNKNOWN = 999 //!< An internal driver error occurred
} nvmlReturn_t;
typedef struct nvmlDevice_st* nvmlDevice_t;
typedef struct nvmlMemory_st
{
unsigned long long total; //!< Total physical device memory (in bytes)
unsigned long long free; //!< Unallocated device memory (in bytes)
unsigned long long used; //!< Sum of Reserved and Allocated device memory (in bytes).
//!< Note that the driver/GPU always sets aside a small amount of memory for bookkeeping
} nvmlMemory_t;
// end nvml.h definitions
struct {
void *handle;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml { NULL, NULL, NULL, NULL, NULL };
static std::mutex ggml_nvml_lock;
extern "C" {
int ggml_nvml_init() {
std::lock_guard<std::mutex> lock(ggml_nvml_lock);
if (nvml.handle != NULL) {
// Already initialized
return 0;
}
#ifdef _WIN32
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
fs::path libPath[2];
const char * programDir = std::getenv("ProgramW6432");
if (programDir == NULL) {
libPath[0] = fs::path("Program Files") / fs::path("NVIDIA Corporation") / fs::path("NVSMI") / fs::path("NVML.dll");
} else {
libPath[0] = fs::path(programDir) / fs::path("NVIDIA Corporation") / fs::path("NVSMI") / fs::path("NVML.dll");
}
libPath[1] = fs::path("\\Windows") / fs::path("System32") / fs::path("NVML.dll");
for (int i = 0; i < 2; i++) {
nvml.handle = (void*)LoadLibraryW(libPath[i].wstring().c_str());
if (nvml.handle != NULL) {
break;
}
}
if (nvml.handle == NULL) {
return NVML_ERROR_NOT_FOUND;
}
nvml.nvmlInit_v2 = (nvmlReturn_enum (*)()) GetProcAddress((HMODULE)(nvml.handle), "nvmlInit_v2");
nvml.nvmlShutdown = (nvmlReturn_enum (*)()) GetProcAddress((HMODULE)(nvml.handle), "nvmlShutdown");
nvml.nvmlDeviceGetHandleByUUID = (nvmlReturn_t (*)(const char *, nvmlDevice_t *)) GetProcAddress((HMODULE)(nvml.handle), "nvmlDeviceGetHandleByUUID");
nvml.nvmlDeviceGetMemoryInfo = (nvmlReturn_t (*)(nvmlDevice_t, nvmlMemory_t *)) GetProcAddress((HMODULE)(nvml.handle), "nvmlDeviceGetMemoryInfo");
if (nvml.nvmlInit_v2 == NULL || nvml.nvmlShutdown == NULL || nvml.nvmlDeviceGetHandleByUUID == NULL || nvml.nvmlDeviceGetMemoryInfo == NULL) {
GGML_LOG_INFO("%s unable to locate required symbols in NVML.dll", __func__);
FreeLibrary((HMODULE)(nvml.handle));
nvml.handle = NULL;
return NVML_ERROR_NOT_FOUND;
}
SetErrorMode(old_mode);
#else
// Not currently wired up on Linux
return NVML_ERROR_NOT_SUPPORTED;
#endif
int status = nvml.nvmlInit_v2();
return NVML_SUCCESS;
}
void ggml_nvml_release() {
std::lock_guard<std::mutex> lock(ggml_nvml_lock);
if (nvml.handle == NULL) {
// Already free
return;
}
nvmlReturn_enum status = nvml.nvmlShutdown();
if (status != NVML_SUCCESS) {
GGML_LOG_INFO("%s failed to shutdown NVML: %d\n", __func__, status);
}
#ifdef _WIN32
FreeLibrary((HMODULE)(nvml.handle));
nvml.handle = NULL;
#else
// Not currently wired up on Linux
#endif
}
int ggml_nvml_get_device_memory(const char *uuid, size_t *free, size_t *total) {
std::lock_guard<std::mutex> lock(ggml_nvml_lock);
if (nvml.handle == NULL) {
return NVML_ERROR_UNINITIALIZED;
}
nvmlDevice_t device;
auto status = nvml.nvmlDeviceGetHandleByUUID(uuid, &device);
if (status != NVML_SUCCESS) {
return status;
}
nvmlMemory_t memInfo = {0};
status = nvml.nvmlDeviceGetMemoryInfo(device, &memInfo);
if (status == NVML_SUCCESS) {
*free = memInfo.free;
*total = memInfo.total;
}
return status;
}
}

338
ml/device.go Normal file
View File

@ -0,0 +1,338 @@
package ml
import (
"context"
"encoding/binary"
"fmt"
"hash/maphash"
"log/slog"
"slices"
"sort"
"strconv"
"strings"
"github.com/ollama/ollama/format"
)
// GPULayers is a set of layers to be allocated on a single GPU
type GPULayers struct {
DeviceID
// Layers is a set of layer indicies to load
Layers []int
}
func (g GPULayers) String() string {
if len(g.Layers) == 0 {
return ""
}
slices.Sort(g.Layers)
contiguous := true
base := g.Layers[0]
for i := range g.Layers {
if g.Layers[i] != base+i {
contiguous = false
break
}
}
if contiguous {
return fmt.Sprintf("ID:%v Layers:%v(%v..%v)", g.ID, len(g.Layers), g.Layers[0], g.Layers[len(g.Layers)-1])
} else {
return fmt.Sprintf("ID:%v Layers:%v%v", g.ID, len(g.Layers), g.Layers)
}
}
// GPULayersList is a set of layer allocations across multiple GPUs
type GPULayersList []GPULayers
func (l GPULayersList) String() string {
if l.Sum() > 0 {
return fmt.Sprintf("%v%v", l.Sum(), []GPULayers(l))
} else {
return fmt.Sprintf("%v", []GPULayers(l))
}
}
// Sum is the total number of layers assigned across all GPUs
func (l GPULayersList) Sum() int {
var sum int
for _, g := range l {
sum += len(g.Layers)
}
return sum
}
var h maphash.Hash
// Hash is an identifier of this layer assignment
func (l GPULayersList) Hash() uint64 {
h.Reset()
for _, g := range l {
if len(g.Layers) > 0 {
h.WriteString(g.ID + g.Library)
for _, l := range g.Layers {
binary.Write(&h, binary.NativeEndian, int64(l))
}
}
}
return h.Sum64()
}
// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
BackendMemory
}
func (e ErrNoMem) Error() string {
return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}
// Minimal unique device identification
type DeviceID struct {
// ID is an identifier for the device for matching with system
// management libraries. The ID is only unique for other devices
// using the same Library.
// This ID represents a "post filtered" view of the enumerated devices
// if the ID is numeric
ID string `json:"id"`
// Library identifies which library is used for the device (e.g. CUDA, ROCm, etc.)
Library string `json:"backend,omitempty"`
}
// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
DeviceID
// Name is the name of the device as labeled by the backend. It
// may not be persistent across instances of the runner.
Name string
// Weights is the per-layer memory needed for the model weights.
Weights []uint64
// Cache is the per-layer memory needed for the KV cache.
Cache []uint64
// Graph is the size of the compute graph. It is not per-layer.
Graph uint64
}
func sumMemory(mem []uint64) uint64 {
var sum uint64
for _, m := range mem {
sum += m
}
return sum
}
// Size returns the total size of the memory required by this device
func (m DeviceMemory) Size() uint64 {
return sumMemory(m.Weights) + sumMemory(m.Cache) + m.Graph
}
func memoryPresent(mem []uint64) bool {
return slices.ContainsFunc(mem, func(m uint64) bool { return m != 0 })
}
func (m DeviceMemory) LogValue() slog.Value {
var attrs []slog.Attr
if memoryPresent(m.Weights) {
attrs = append(attrs, slog.Any("Weights", m.Weights))
}
if memoryPresent(m.Cache) {
attrs = append(attrs, slog.Any("Cache", m.Cache))
}
if m.Graph != 0 {
attrs = append(attrs, slog.Any("Graph", m.Graph))
}
if len(attrs) > 0 && m.ID != "" {
attrs = append([]slog.Attr{slog.String("ID", m.ID)}, attrs...)
}
return slog.GroupValue(attrs...)
}
// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
// InputWeights are always located on the CPU and cannot be moved
InputWeights uint64
// CPU model components are located in system memory. This does not
// include unified memory allocated through the GPU.
CPU DeviceMemory
// GPU model components are located on one or more GPUs.
GPUs []DeviceMemory
}
func (m BackendMemory) LogValue() slog.Value {
var attrs []slog.Attr
if m.InputWeights != 0 {
attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
}
attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
for _, g := range m.GPUs {
attrs = append(attrs, slog.Any(g.Name, g))
}
return slog.GroupValue(attrs...)
}
// Log prints a high level summary of the memory
func (m BackendMemory) Log(level slog.Level) {
var total uint64
for _, gpu := range m.GPUs {
if sum := sumMemory(gpu.Weights); sum > 0 {
slog.Log(context.TODO(), level, "model weights", "device", gpu.Name, "size", format.HumanBytes2(sum))
total += sum
}
}
if sum := m.InputWeights + sumMemory(m.CPU.Weights); sum > 0 {
slog.Log(context.TODO(), level, "model weights", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
total += sum
}
for _, gpu := range m.GPUs {
if sum := sumMemory(gpu.Cache); sum > 0 {
slog.Log(context.TODO(), level, "kv cache", "device", gpu.Name, "size", format.HumanBytes2(sum))
total += sum
}
}
if sum := sumMemory(m.CPU.Cache); sum > 0 {
slog.Log(context.TODO(), level, "kv cache", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
total += sum
}
for _, gpu := range m.GPUs {
if sum := gpu.Graph; sum > 0 {
slog.Log(context.TODO(), level, "compute graph", "device", gpu.Name, "size", format.HumanBytes2(sum))
total += sum
}
}
if sum := m.CPU.Graph; sum > 0 {
slog.Log(context.TODO(), level, "compute graph", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
total += sum
}
if total > 0 {
slog.Log(context.TODO(), level, "total memory", "size", format.HumanBytes2(total))
}
}
type DeviceInfo struct {
DeviceID
// Name is the name of the device as labeled by the backend. It
// may not be persistent across instances of the runner.
Name string `json:"name"`
// Description is the longer user-friendly identification of the device
Description string `json:"description"`
// FilterID is populated with the unfiltered device ID if a numeric ID is used
// so the device can be included.
FilteredID string `json:"filtered_id,omitempty"`
// Integrated is set true for integrated GPUs, false for Discrete GPUs
Integrated bool `json:"integration,omitempty"`
// PCIID is the bus, device and domain ID of the device for deduplication
// when discovered by multiple backends
PCIID string `json:"pci_id,omitempty"`
// TotalMemory is the total amount of memory the device can use for loading models
TotalMemory uint64 `json:"total_memory"`
// FreeMemory is the amount of memory currently available on the device for loading models
FreeMemory uint64 `json:"free_memory,omitempty"`
// ComputeMajor is the major version of capabilities of the device
// if unsupported by the backend, -1 will be returned
ComputeMajor int
// ComputeMinor is the minor version of capabilities of the device
// if unsupported by the backend, -1 will be returned
ComputeMinor int
// Driver Information
DriverMajor int `json:"driver_major,omitempty"`
DriverMinor int `json:"driver_minor,omitempty"`
// Where backends were loaded from
LibraryPath []string
}
func (d DeviceInfo) Compute() string {
// AMD gfx is encoded into the major minor in hex form
if strings.EqualFold(d.Library, "ROCm") {
return fmt.Sprintf("gfx%x%02x", d.ComputeMajor, d.ComputeMinor)
}
return strconv.Itoa(d.ComputeMajor) + "." + strconv.Itoa(d.ComputeMinor)
}
func (d DeviceInfo) Driver() string {
return strconv.Itoa(d.DriverMajor) + "." + strconv.Itoa(d.DriverMinor)
}
type DeviceComparison int
const (
UniqueDevice DeviceComparison = iota
SameBackendDevice // The device is the same, and the library/backend is the same
DuplicateDevice // The same physical device but different library/backend (overlapping device)
)
func (a DeviceInfo) Compare(b DeviceInfo) DeviceComparison {
if a.PCIID != b.PCIID {
return UniqueDevice
}
if a.Library == b.Library {
return SameBackendDevice
}
return DuplicateDevice
}
// For a SameBackendDevice, return true if b is better than a
// e.g. newer GPU library version
func (a DeviceInfo) IsBetter(b DeviceInfo) bool {
aLib := a.LibraryPath[len(a.LibraryPath)-1]
bLib := b.LibraryPath[len(b.LibraryPath)-1]
if aLib == bLib {
return false
}
aLibSplit := strings.SplitN(aLib, "_", 2)
bLibSplit := strings.SplitN(bLib, "_", 2)
if len(aLibSplit) < 2 || len(bLibSplit) < 2 {
return false
}
if aLibSplit[0] != bLibSplit[0] {
slog.Debug("unexpected libraries", "a", aLib, "b", bLib)
return false
}
if aLibSplit[1] == bLibSplit[1] {
return false
}
cmp := []string{aLibSplit[1], bLibSplit[1]}
sort.Sort(sort.Reverse(sort.StringSlice(cmp)))
return cmp[0] == bLibSplit[1]
}

View File

@ -3,11 +3,9 @@ package pooling_test
import (
"bytes"
"os"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/discover"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
@ -32,20 +30,7 @@ func setup(tb testing.TB, n int) ml.Backend {
tb.Fatal(err)
}
var gpuLayers ml.GPULayersList
if gpus := discover.GetGPUInfo(); len(gpus) > 0 {
gpuLayers = append(gpuLayers, ml.GPULayers{
ID: gpus[0].ID,
Layers: slices.Collect(func(yield func(int) bool) {
for i := range n {
if !yield(i) {
return
}
}
}),
})
}
b, err := ggml.New(f.Name(), ml.BackendParams{AllocMemory: true, GPULayers: gpuLayers})
b, err := ggml.New(f.Name(), ml.BackendParams{AllocMemory: true})
if err != nil {
tb.Fatal(err)
}

View File

@ -5,6 +5,7 @@ import (
"fmt"
"iter"
"log/slog"
"slices"
"strings"
"github.com/dlclark/regexp2"
@ -13,16 +14,28 @@ import (
)
type BytePairEncoding struct {
pre *regexp2.Regexp
vocab *Vocabulary
vocab *Vocabulary
regexps []*regexp2.Regexp
}
var _ TextProcessor = (*BytePairEncoding)(nil)
func NewBytePairEncoding(pre string, vocab *Vocabulary) BytePairEncoding {
func NewBytePairEncoding(vocab *Vocabulary, pretokenizers ...string) BytePairEncoding {
if len(pretokenizers) == 0 {
// set default byte-level pretokenizer if none provided, e.g.
// https://github.com/huggingface/tokenizers/blob/main/tokenizers/src/pre_tokenizers/byte_level.rs#L44
pretokenizers = []string{`'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+`}
}
return BytePairEncoding{
pre: regexp2.MustCompile(pre, regexp2.None),
vocab: vocab,
regexps: slices.Collect(func(yield func(*regexp2.Regexp) bool) {
for _, p := range pretokenizers {
if !yield(regexp2.MustCompile(p, regexp2.RE2)) {
return
}
}
}),
}
}
@ -35,13 +48,36 @@ func (bpe BytePairEncoding) Is(id int32, special Special) bool {
}
func (bpe *BytePairEncoding) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := bpe.pre.FindStringMatch(s); m != nil; m, _ = bpe.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
parts := []string{s}
for _, re := range bpe.regexps {
parts = slices.Collect(func(yield func(string) bool) {
for _, part := range parts {
r := []rune(part)
var offset int
for m, _ := re.FindRunesMatch(r); m != nil; m, _ = re.FindNextMatch(m) {
if offset-m.Index != 0 {
if !yield(string(r[:m.Index])) {
return
}
}
if !yield(m.String()) {
return
}
offset = m.Index + m.Length
}
if offset < len(r) {
if !yield(string(r[offset:])) {
return
}
}
}
}
})
}
return slices.Values(parts)
}
// fragment is a string fragment and their corresponding token IDs

View File

@ -59,12 +59,12 @@ func llama(t testing.TB) BytePairEncoding {
}
return NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&Vocabulary{
Values: tokens,
Types: types,
Merges: merges,
},
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
)
}
@ -282,3 +282,41 @@ func BenchmarkBytePairEncoding(b *testing.B) {
})
}
}
func TestSplit(t *testing.T) {
cases := []struct {
name string
patterns,
want []string
}{
{
name: "default",
want: []string{"Hello", ",", " WORLD", "!!", " How", "'s", " it", " going", "?", " 123", " 一二三"},
},
{
name: "unicode",
patterns: []string{
"\\p{N}{1,3}",
`[一-龥぀-ゟ゠-ヿ]+`,
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
},
want: []string{"Hello", ",", " WORLD", "!!", " How", "'s", " it", " going", "?", " ", "123", " ", "一二三"},
},
{
name: "individual digits",
patterns: []string{
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
},
want: []string{"Hello", ",", " WORLD", "!!", " How", "'s", " it", " going", "?", " ", "1", "2", "3", " 一二三"},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
tokenizer := NewBytePairEncoding(nil, tt.patterns...)
if diff := cmp.Diff(tt.want, slices.Collect(tokenizer.split("Hello, WORLD!! How's it going? 123 一二三"))); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
})
}
}

View File

@ -5,6 +5,7 @@ import (
"fmt"
_ "image/jpeg"
_ "image/png"
"log/slog"
"os"
"reflect"
"strconv"
@ -107,23 +108,12 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
return nil, err
}
arch := b.Config().Architecture()
if pooling.Type(b.Config().Uint("pooling_type")) != pooling.TypeNone {
arch = arch + "_embed"
}
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(b.Config())
m, err := modelForArch(b.Config())
if err != nil {
return nil, err
}
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
return m, nil
@ -135,30 +125,38 @@ func NewTextProcessor(s string) (TextProcessor, error) {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
return getTextProcessor(meta.KV())
}
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
arch := kv.Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(kv)
m, err := modelForArch(meta.KV())
if err != nil {
return nil, err
}
tp, ok := m.(TextProcessor)
if !ok {
return nil, fmt.Errorf("%v is not a TextProcessor", m)
return nil, ErrUnsupportedTokenizer
}
return tp, nil
}
func modelForArch(c fs.Config) (Model, error) {
arch := c.Architecture()
if pooling.Type(c.Uint("pooling_type")) != pooling.TypeNone {
arch = arch + "_embed"
}
f, ok := models[arch]
if !ok {
return nil, ErrUnsupportedModel
}
return f(c)
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
@ -174,35 +172,44 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
// make a copy
tagsCopy := tags
if tag := t.Field(i).Tag.Get("gguf"); tag != "" {
tagsCopy = append(tagsCopy, ParseTags(tag))
tagsCopy = append(tagsCopy, parseTag(tag))
}
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
vv.Set(reflect.ValueOf(base))
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
var fn func([]Tag) [][]string
fn = func(tags []Tag) (names [][]string) {
var fn func([]Tag, string, string) [][]string
fn = func(tags []Tag, prefix, suffix string) (fullNames [][]string) {
if len(tags) > 0 {
localNames := []string{tags[0].Name}
localNames = append(localNames, tags[0].Alternate...)
for _, localName := range localNames {
fullName := []string{localName}
nested := fn(tags[1:])
if len(nested) > 0 {
for _, rest := range nested {
names = append(names, append(fullName, rest...))
var names []string
if tags[0].name != "" {
for _, n := range append([]string{tags[0].name}, tags[0].alternatives...) {
names = append(names, prefix+n+suffix)
}
}
childNames := fn(tags[1:], tags[0].prefix, tags[0].suffix)
if len(names) == 0 {
// current tag has no name, use child names only
fullNames = append(fullNames, childNames...)
} else if len(childNames) == 0 {
// current tag has names but no children, create branches for each name
for _, name := range names {
fullNames = append(fullNames, []string{name})
}
} else {
// merge each name with each child
for _, name := range names {
for _, childName := range childNames {
fullNames = append(fullNames, append([]string{name}, childName...))
}
} else {
names = append(names, fullName)
}
}
}
return names
return fullNames
}
names := fn(tagsCopy)
names := fn(tagsCopy, "", "")
for _, name := range names {
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
logutil.Trace("found tensor", "", tensor)
@ -216,9 +223,9 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
for i := range vv.Len() {
vvv := vv.Index(i)
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
setPointer(base, vvv, append(tagsCopy, Tag{name: strconv.Itoa(i)}))
} else {
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{name: strconv.Itoa(i)})...))
}
}
}
@ -257,18 +264,31 @@ func setPointer(base Base, v reflect.Value, tags []Tag) {
}
type Tag struct {
Name string
Alternate []string
name,
// prefix and suffix are applied to child tags
prefix,
suffix string
alternatives []string
}
func ParseTags(s string) (tag Tag) {
func parseTag(s string) (tag Tag) {
parts := strings.Split(s, ",")
if len(parts) > 0 {
tag.Name = parts[0]
tag.name = parts[0]
for _, part := range parts[1:] {
if value, ok := strings.CutPrefix(part, "alt:"); ok {
tag.Alternate = append(tag.Alternate, value)
if value, ok := strings.CutPrefix(part, "alt:"); ok && tag.name == "" {
// elevate alternative to primary if no primary given
tag.name = value
slog.Warn("gguf tag has alt: but no primary name", "tag", s)
} else if ok {
tag.alternatives = append(tag.alternatives, value)
}
if value, ok := strings.CutPrefix(part, "pre:"); ok {
tag.prefix = value
}
if value, ok := strings.CutPrefix(part, "suf:"); ok {
tag.suffix = value
}
}
}

View File

@ -1,9 +1,9 @@
package model
import (
"errors"
"reflect"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
@ -12,7 +12,6 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
func TestParseTags(t *testing.T) {
@ -23,14 +22,14 @@ func TestParseTags(t *testing.T) {
{
value: "output",
want: Tag{
Name: "output",
name: "output",
},
},
{
value: "output,alt:token_embd",
want: Tag{
Name: "output",
Alternate: []string{
name: "output",
alternatives: []string{
"token_embd",
},
},
@ -39,8 +38,8 @@ func TestParseTags(t *testing.T) {
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
got := ParseTags(tt.value)
if diff := cmp.Diff(tt.want, got); diff != "" {
got := parseTag(tt.value)
if diff := cmp.Diff(tt.want, got, cmp.AllowUnexported((Tag{}))); diff != "" {
t.Errorf("ParseTags() returned unexpected values (-want +got):\n%s", diff)
}
})
@ -126,6 +125,7 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
Input *nn.Embedding `gguf:"input"`
Output *nn.Linear `gguf:"output,alt:input"`
Nested *nested `gguf:"nested"`
Tensor ml.Tensor `gguf:"leaf,alt:tensor"`
}
var m fakeModel
@ -134,6 +134,7 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
names: []string{
"input.weight",
"nested.b.weight",
"leaf",
},
}}, v.Elem()))
@ -143,44 +144,115 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
Nested: &nested{
Weight: &nn.Linear{Weight: &fakeTensor{Name: "nested.b.weight"}},
},
Tensor: &fakeTensor{Name: "leaf"},
}, m); diff != "" {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
func TestGetTextProcessor(t *testing.T) {
tp, err := getTextProcessor(fsggml.KV{})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
func TestPopulateFieldsPrefixSuffixName(t *testing.T) {
type fakeBlock struct {
A *nn.Linear `gguf:"a"`
B *nn.Linear `gguf:",pre:b_"`
C *nn.Linear `gguf:",suf:_c"`
XY *nn.Linear `gguf:",pre:x_,suf:_y"`
}
models["dummy"] = func(fs.Config) (Model, error) {
return notTextProcessorModel{}, nil
type fakeModel struct {
Blocks []fakeBlock `gguf:"blk"`
}
tp, err = getTextProcessor(fsggml.KV{"general.architecture": "dummy"})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
m := fakeModel{
Blocks: make([]fakeBlock, 2),
}
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
names: []string{
"blk.0.a.weight",
"blk.0.b_weight",
"blk.0.b_bias",
"blk.0.weight_c",
"blk.0.x_weight_y",
"blk.1.a.weight",
"blk.1.b_weight",
"blk.1.b_bias",
"blk.1.weight_c",
"blk.1.x_weight_y",
},
}}, v.Elem()))
if diff := cmp.Diff(fakeModel{
Blocks: []fakeBlock{
{
A: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.a.weight"}},
B: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.b_weight"}, Bias: &fakeTensor{Name: "blk.0.b_bias"}},
C: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.weight_c"}},
XY: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.x_weight_y"}},
},
{
A: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.a.weight"}},
B: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.b_weight"}, Bias: &fakeTensor{Name: "blk.1.b_bias"}},
C: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.weight_c"}},
XY: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.x_weight_y"}},
},
},
}, m); diff != "" {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
type notTextProcessorModel struct{}
func TestModelForArch(t *testing.T) {
type fakeModel struct {
Model
}
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
panic("unimplemented")
}
type fakeEmbeddingModel struct {
Model
}
func (notTextProcessorModel) Backend() ml.Backend {
panic("unimplemented")
}
models["model"] = func(c fs.Config) (Model, error) { return fakeModel{}, nil }
models["model_embed"] = func(c fs.Config) (Model, error) { return fakeEmbeddingModel{}, nil }
func (notTextProcessorModel) Config() config {
panic("unimplemented")
cases := []struct {
name string
config fs.Config
want any
err error
}{
{
name: "model",
config: fsggml.KV{
"general.architecture": "model",
},
want: fakeModel{},
},
{
name: "embedding",
config: fsggml.KV{
"general.architecture": "model",
"model.pooling_type": uint32(1),
},
want: fakeEmbeddingModel{},
},
{
name: "unsupported",
config: fsggml.KV{
"general.architecture": "unsupported",
},
err: ErrUnsupportedModel,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got, err := modelForArch(tt.config)
if !errors.Is(err, tt.err) {
t.Fatal(err)
}
if diff := cmp.Diff(tt.want, got); diff != "" {
t.Errorf("modelForArch() returned unexpected values (-want +got):\n%s", diff)
}
})
}
}

View File

@ -0,0 +1,324 @@
package deepseek2
// uses deepseek 2 architecture but written based on deepseek 3 model
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
numExpertsUsed int
numExperts int
normTopKProb bool
routedScalingFactor float32
kvLoraRank,
qkNopeHeadDim,
qkRopeHeadDim,
kqNopeHeadDim,
qkHeadDim int
qLoraRank int
vHeadDim int
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength,
originalContextLength int
eps,
ropeBase,
ropeScale float32
kqScale float64
}
func (o Options) RoPEOptions() []func(*rope.Options) {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
return []func(*rope.Options){
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(attnFactor),
}
}
type Attention struct {
Q *nn.Linear `gguf:"attn_q"`
QA *nn.Linear `gguf:"attn_q_a"`
QANorm *nn.RMSNorm `gguf:"attn_q_a_norm"`
QB *nn.Linear `gguf:"attn_q_b"`
KVA *nn.Linear `gguf:"attn_kv_a_mqa"`
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
KVB *nn.Linear `gguf:"attn_kv_b"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
}
func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
seqLength := hiddenStates.Dim(1)
var query ml.Tensor
if opts.qLoraRank == 0 { // nil {
query = attn.Q.Forward(ctx, hiddenStates)
} else {
query = attn.QA.Forward(ctx, hiddenStates)
query = attn.QANorm.Forward(ctx, query, opts.eps)
query = attn.QB.Forward(ctx, query)
}
query = query.Reshape(ctx, query.Dim(0)/opts.numHeads, opts.numHeads, seqLength)
qPass := query.View(ctx, 0,
opts.qkNopeHeadDim, query.Stride(1),
query.Dim(1), query.Stride(2),
query.Dim(2))
qRot := query.View(ctx, opts.qkNopeHeadDim*query.Stride(0),
opts.qkRopeHeadDim, query.Stride(1),
query.Dim(1), query.Stride(2),
query.Dim(2))
compressedKV := attn.KVA.Forward(ctx, hiddenStates)
kPass := compressedKV.View(ctx, 0, opts.kvLoraRank, compressedKV.Stride(1), compressedKV.Dim(1))
kRot := compressedKV.View(ctx, opts.kvLoraRank*compressedKV.Stride(0),
opts.qkRopeHeadDim, compressedKV.Stride(1),
1, compressedKV.Stride(1),
compressedKV.Dim(1))
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kPass = kv.View(ctx, 0, opts.kqNopeHeadDim, kv.Stride(1), kv.Dim(1), kv.Stride(2), kv.Dim(2))
value := kv.View(ctx, opts.kqNopeHeadDim*kv.Stride(0),
opts.vHeadDim, kv.Stride(1),
kv.Dim(1), kv.Stride(2),
kv.Dim(2)).Contiguous(ctx)
qRot = fast.RoPE(ctx, qRot, positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
kRot = fast.RoPE(ctx, kRot, positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
kRot = kRot.Repeat(ctx, 1, qPass.Dim(1))
query = qRot.Concat(ctx, qPass, 0)
key := kRot.Concat(ctx, kPass, 0)
attention := nn.Attention(ctx, query, key, value, opts.kqScale, cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
return attn.Output.Forward(ctx, attention)
}
type MLP interface {
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
SharedExpert *dense `gguf:",suf:_shexp"`
ExpProbsBias ml.Tensor `gguf:"exp_probs_b.bias,alt:exp_probs_b"`
}
func (moe *sparse) Moe(ctx ml.Context, hiddenStates, topKIndices, topKWeights ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := moe.Up.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = moe.Gate.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = hiddenStates.SILU(ctx, upStates)
experts := moe.Down.Weight.MulmatID(ctx, hiddenStates, topKIndices)
experts = experts.Mul(ctx, topKWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates
}
func (moe *sparse) topKIndices(ctx ml.Context, scores ml.Tensor, opts *Options) ml.Tensor {
scores = scores.Add(ctx, moe.ExpProbsBias)
topKIndices := scores.TopK(ctx, opts.numExpertsUsed)
return topKIndices
}
func (moe *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
residuals := hiddenStates
routerLogits := moe.Router.Forward(ctx, hiddenStates)
scores := routerLogits.Sigmoid(ctx)
topKIndices := moe.topKIndices(ctx, scores, opts)
topKWeights := scores.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, topKIndices)
if opts.normTopKProb {
topKWeights = topKWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
topKWeights = topKWeights.Div(ctx, topKWeights.SumRows(ctx))
topKWeights = topKWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
}
topKWeights = topKWeights.Scale(ctx, float64(opts.routedScalingFactor))
hiddenStates = moe.Moe(ctx, hiddenStates, topKIndices, topKWeights, opts)
sharedExpertResult := moe.SharedExpert.Forward(ctx, residuals, opts)
hiddenStates = hiddenStates.Add(ctx, sharedExpertResult)
return hiddenStates
}
type dense struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP MLP
}
func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = t.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = t.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
}
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
firstDenseLayerIndex := int(c.Uint("leading_dense_block_count"))
for i := range layers {
if i < firstDenseLayerIndex {
layers[i].MLP = &dense{}
} else {
layers[i].MLP = &sparse{}
}
}
mScale := float32(1.0 + float64(c.Float("rope.scaling.yarn_log_multiplier"))*math.Log(float64(c.Float("rope.scaling.factor"))))
kqScale := float64(mScale) * float64(mScale) / math.Sqrt(float64(c.Uint("attention.key_length")))
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
// Split regex into multiple parts (according to DeepSeek3's regex)
"\\p{N}{1,3}",
`[一-龥぀-ゟ゠-ヿ]+`,
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
),
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("expert_weights_norm", true),
qLoraRank: int(c.Uint("attention.q_lora_rank")), //&qLoraRankVal,
kvLoraRank: int(c.Uint("attention.kv_lora_rank")),
qkHeadDim: int(c.Uint("attention.key_length")),
vHeadDim: int(c.Uint("attention.value_length")),
qkRopeHeadDim: int(c.Uint("rope.dimension_count")),
qkNopeHeadDim: int(c.Uint("attention.key_length")) - int(c.Uint("rope.dimension_count")),
kqNopeHeadDim: int(c.Uint("attention.key_length")) - int(c.Uint("rope.dimension_count")),
routedScalingFactor: c.Float("expert_weights_scale"),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
kqScale: kqScale,
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.qkRopeHeadDim, m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("deepseek2", New)
}

View File

@ -128,7 +128,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, 1/m.Options.ropeScale, rope.WithTypeNeoX()), nil
}
type MLP struct {

View File

@ -53,7 +53,10 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: 1,
// NOTE: the rope.scaling.factor is set incorrectly in the official QAT weights
// (8 instead of 1)
// ropeScale: c.Float("rope.scaling.factor", 1.0),
},
}
@ -113,7 +116,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.TextConfig.ropeGlobalBase
}
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, 1/m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
}
type TextMLP struct {

View File

@ -227,17 +227,6 @@ func New(c fs.Config) (model.Model, error) {
m := Transformer{
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer",
strings.Join([]string{
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`\p{N}{1,3}`,
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
`\s*[\r\n]+`,
`\s+(?!\S)`,
`\s+`,
}, "|"),
),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@ -250,6 +239,15 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
strings.Join([]string{
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`\p{N}{1,3}`,
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
`\s*[\r\n]+`,
`\s+(?!\S)`,
`\s+`,
}, "|"),
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),

View File

@ -54,10 +54,30 @@ func New(c fs.Config) (model.Model, error) {
}
switch c.String("tokenizer.ggml.model") {
case "gpt2":
processor = model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&vocabulary,
)
var pretokenizers []string
switch c.String("tokenizer.ggml.pre") {
case "default":
// no-op use the default bpe pretokenizer
case "qwen2":
pretokenizers = []string{
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
case "refact":
pretokenizers = []string{
`\p{N}`,
`'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+`,
}
case "tekken":
pretokenizers = []string{
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
default:
// use a llama-style pretokenizer
pretokenizers = []string{
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
}
processor = model.NewBytePairEncoding(&vocabulary, pretokenizers...)
case "llama":
processor = model.NewSentencePiece(&vocabulary)
default:

View File

@ -34,8 +34,6 @@ func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
func New(c fs.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer",
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@ -48,6 +46,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),

View File

@ -88,22 +88,10 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
return nextStates
}
// TextSharedExpert is TextMLP with different tensor names
type TextSharedExpert struct {
Gate *nn.Linear `gguf:"ffn_gate_shexp"`
Up *nn.Linear `gguf:"ffn_up_shexp"`
Down *nn.Linear `gguf:"ffn_down_shexp"`
}
func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextMOE struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Experts *TextExperts
SharedExpert *TextSharedExpert
SharedExpert *TextMLP `gguf:",suf:_shexp"`
}
func (moe *TextMOE) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {

View File

@ -33,7 +33,6 @@ var _ model.TextProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@ -46,6 +45,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
TextModel: newTextModel(c),
VisionModel: newVisionModel(c),

View File

@ -33,7 +33,6 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@ -46,6 +45,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),

View File

@ -2,6 +2,7 @@ package models
import (
_ "github.com/ollama/ollama/model/models/bert"
_ "github.com/ollama/ollama/model/models/deepseek2"
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"

View File

@ -139,7 +139,6 @@ func New(c fs.Config) (model.Model, error) {
m := Model{
Layers: make([]DecoderLayer, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@ -152,6 +151,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),

View File

@ -29,7 +29,6 @@ var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@ -42,6 +41,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
TextModel: NewTextModel(c),
VisionModel: newVisionModel(c),

View File

@ -0,0 +1,73 @@
package qwen3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.BytePairEncoding
*Model
poolingType pooling.Type
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbed(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
layers[i].MLP = &dense{}
}
m := embedModel{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
Model: &Model{
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
},
poolingType: pooling.Type(c.Uint("pooling_type")),
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}

View File

@ -151,14 +151,25 @@ type Model struct {
*Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
return m.Output.Forward(ctx, hiddenStates), nil
}
// Forward implements model.Model.
func (m *Model) forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
if m.Cache != nil {
m.Cache.SetLayer(i)
}
var outputs ml.Tensor
if i == len(m.Layers)-1 {
@ -168,8 +179,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
return m.OutputNorm.Forward(ctx, hiddenStates, m.eps), nil
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
@ -190,7 +200,6 @@ func New(c fs.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@ -203,6 +212,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
Layers: layers,
Options: &Options{
@ -227,4 +237,5 @@ func New(c fs.Config) (model.Model, error) {
func init() {
model.Register("qwen3", New)
model.Register("qwen3moe", New)
model.Register("qwen3_embed", newEmbed)
}

View File

@ -2,10 +2,16 @@ package parsers
import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/harmony"
)
type Parser interface {
Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error)
// Init initializes the parser with tools and optional last message for chat prefill
// Returns processed tools if the parser needs to modify them (e.g., harmony renames them)
Init(tools []api.Tool, lastMessage *api.Message) []api.Tool
// Add processes streamed content and returns parsed content, thinking, and tool calls
// The done flag indicates if this is the last chunk (used for draining accumulators)
Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error)
HasToolSupport() bool
HasThinkingSupport() bool
}
@ -17,6 +23,8 @@ func ParserForName(name string) Parser {
return parser
case "passthrough":
return &PassthroughParser{}
case "harmony":
return harmony.NewHarmonyMessageHandler()
default:
return nil
}
@ -24,7 +32,11 @@ func ParserForName(name string) Parser {
type PassthroughParser struct{}
func (p *PassthroughParser) Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error) {
func (p *PassthroughParser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
return tools // passthrough doesn't modify tools
}
func (p *PassthroughParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
return s, "", nil, nil
}

View File

@ -11,6 +11,7 @@ import (
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
@ -31,6 +32,7 @@ const (
type Qwen3CoderParser struct {
state qwenParserState
acc strings.Builder
tools []api.Tool
}
func (p *Qwen3CoderParser) HasToolSupport() bool {
@ -41,7 +43,12 @@ func (p *Qwen3CoderParser) HasThinkingSupport() bool {
return false
}
func (p *Qwen3CoderParser) Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error) {
func (p *Qwen3CoderParser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
p.tools = tools
return tools // Qwen doesn't modify tools
}
func (p *Qwen3CoderParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.acc.WriteString(s)
events := p.parseEvents()
@ -51,7 +58,7 @@ func (p *Qwen3CoderParser) Add(s string, tools []api.Tool) (content string, thin
for _, event := range events {
switch event := event.(type) {
case qwenEventRawToolCall:
toolCall, err := parseToolCall(event, tools)
toolCall, err := parseToolCall(event, p.tools)
if err != nil {
slog.Warn("qwen tool call parsing failed", "error", err)
return "", "", nil, err
@ -198,12 +205,21 @@ func overlap(s, delim string) int {
}
func trailingWhitespaceLen(s string) int {
for i := len(s) - 1; i >= 0; i-- {
if !unicode.IsSpace(rune(s[i])) {
return len(s) - i - 1
remaining := s
total := 0
for len(remaining) > 0 {
r, size := utf8.DecodeLastRuneInString(remaining)
// if it's an invalid utf8 rune, assume it isn't whitespace
if r == utf8.RuneError && size == 1 {
break
}
if !unicode.IsSpace(r) {
break
}
total += size
remaining = remaining[:len(remaining)-size]
}
return len(s)
return total
}
type XMLFunctionCall struct {
@ -359,7 +375,7 @@ func parseValue(raw string, paramType api.PropertyType) any {
// Try array
if typeSet["array"] {
var arr []interface{}
var arr []any
if err := json.Unmarshal([]byte(raw), &arr); err == nil {
return arr
}
@ -371,7 +387,7 @@ func parseValue(raw string, paramType api.PropertyType) any {
// Try object
if typeSet["object"] {
var obj map[string]interface{}
var obj map[string]any
if err := json.Unmarshal([]byte(raw), &obj); err == nil {
return obj
}
@ -393,18 +409,55 @@ func parseValue(raw string, paramType api.PropertyType) any {
return raw
}
var qwenTagRegex = regexp.MustCompile(`<(\w+)=([^>]+)>`)
var (
qwenTagRegex = regexp.MustCompile(`<(\w+)=([^>]+)>`)
qwenXMLTagRegex = regexp.MustCompile(`</?(?:function|parameter)(?:\s+name="[^"]*")?>`)
)
// transformToXML transforms a raw qwen tool call with xml-like tags into valid
// xml so that it can be parsed by any xml parser
func transformToXML(raw string) string {
// take the form `<tag=abc>` and transform it to `<tag name="abc">`, taking
// care to properly escape the string that becomes the attribute value
return qwenTagRegex.ReplaceAllStringFunc(raw, func(match string) string {
transformed := qwenTagRegex.ReplaceAllStringFunc(raw, func(match string) string {
groups := qwenTagRegex.FindStringSubmatch(match)
tag := groups[1]
var escapedValue strings.Builder
xml.EscapeText(&escapedValue, []byte(groups[2]))
return fmt.Sprintf(`<%s name="%s">`, tag, escapedValue.String())
})
// Walk the resulting string, escaping any character data that sits between the
// xml tags we just emitted
var out strings.Builder
lastIdx := 0
for _, loc := range qwenXMLTagRegex.FindAllStringIndex(transformed, -1) {
if loc[0] > lastIdx {
escapeTextNode(&out, transformed[lastIdx:loc[0]])
}
out.WriteString(transformed[loc[0]:loc[1]])
lastIdx = loc[1]
}
if lastIdx < len(transformed) {
escapeTextNode(&out, transformed[lastIdx:])
}
return out.String()
}
// escapeTextNode escapes XML character data without altering other characters
// like newlines or tabs (which is why we don't use xml.EscapeText for this)
func escapeTextNode(sb *strings.Builder, s string) {
for _, r := range s {
switch r {
case '&':
sb.WriteString("&amp;")
case '<':
sb.WriteString("&lt;")
case '>':
sb.WriteString("&gt;")
default:
sb.WriteRune(r)
}
}
}

View File

@ -166,6 +166,137 @@ func TestQwenParserStreaming(t *testing.T) {
},
},
},
{
desc: "unicode content",
steps: []step{
{
input: "你好 🌍<tool_call>test</tool_call>مرحبا",
wantEvents: []qwenEvent{
qwenEventContent{content: "你好 🌍"},
qwenEventRawToolCall{raw: "test"},
qwenEventContent{content: "مرحبا"},
},
},
},
},
{
desc: "arabic text handling",
steps: []step{
{
input: "مرحبا بالعالم",
wantEvents: []qwenEvent{qwenEventContent{content: "مرحبا بالعالم"}},
},
},
},
{
desc: "emoji passthrough",
steps: []step{
{
input: "✅",
wantEvents: []qwenEvent{qwenEventContent{content: "✅"}},
},
},
},
{
desc: "emoji after tool call",
steps: []step{
{
input: "<tool_call>test</tool_call>完成 ✅",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "test"},
qwenEventContent{content: "完成 ✅"},
},
},
},
},
{
desc: "unicode streaming with whitespace handling",
steps: []step{
{
input: "مرحبا",
wantEvents: []qwenEvent{
qwenEventContent{content: "مرحبا"},
},
},
{
input: " \n",
wantEvents: []qwenEvent{},
},
{
input: "世界",
wantEvents: []qwenEvent{
qwenEventContent{content: " \n世界"},
},
},
},
},
{
desc: "non-breaking space withheld across chunks",
steps: []step{
{
input: "Hello\u00a0",
wantEvents: []qwenEvent{
qwenEventContent{content: "Hello"},
},
},
{
input: "world",
wantEvents: []qwenEvent{
qwenEventContent{content: "\u00a0world"},
},
},
},
},
{
desc: "ideographic space before partial tool",
steps: []step{
{
input: "Hello\u3000<tool",
wantEvents: []qwenEvent{
qwenEventContent{content: "Hello"},
},
},
{
input: "_call>abc",
wantEvents: []qwenEvent{},
},
{
input: "</tool_call>def",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "abc"},
qwenEventContent{content: "def"},
},
},
},
},
{
desc: "ideographic space before partial tool fakeout",
steps: []step{
{
input: "Hello\u3000<tool",
wantEvents: []qwenEvent{
qwenEventContent{content: "Hello"},
},
},
{
input: "fakeout>abc",
wantEvents: []qwenEvent{
qwenEventContent{content: "\u3000<toolfakeout>abc"},
},
},
},
},
{
desc: "unicode with partial tool tag",
steps: []step{
{
input: "测试🎯 <to",
wantEvents: []qwenEvent{
qwenEventContent{content: "测试🎯"},
},
},
},
},
}
anyOnlies := false
@ -312,6 +443,62 @@ true
},
},
},
// regression test for <https://github.com/ollama/ollama/issues/12357>
{
name: "ampersands in parameter values",
tools: []api.Tool{},
rawToolCall: `<function=exec>
<parameter=command>
ls && echo "done"
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "exec",
Arguments: map[string]any{
"command": "ls && echo \"done\"",
},
},
},
},
{
name: "angle brackets in parameter values",
tools: []api.Tool{},
rawToolCall: `<function=exec>
<parameter=command>
ls && echo "a > b and a < b"
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "exec",
Arguments: map[string]any{
"command": "ls && echo \"a > b and a < b\"",
},
},
},
},
{
name: "unicode in function names and parameters",
tools: []api.Tool{},
rawToolCall: `<function=获取天气>
<parameter=城市>
北京
</parameter>
<parameter=message>
Hello! 你好! 🌟 مرحبا
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "获取天气",
Arguments: map[string]any{
"城市": "北京",
"message": "Hello! 你好! 🌟 مرحبا",
},
},
},
},
}
for i, step := range steps {
@ -325,6 +512,42 @@ true
}
}
func TestTrailingWhitespaceLenUnicode(t *testing.T) {
cases := []struct {
name string
input string
want int
}{
{
name: "ascii space",
input: "Hello ",
want: 1,
},
{
name: "non-breaking space",
input: "Hello\u00a0",
want: 2,
},
{
name: "ideographic space",
input: "Hello\u3000",
want: 3,
},
{
name: "multiple runes of whitespace",
input: "Hi\u00a0\u3000",
want: 5,
},
}
for _, tc := range cases {
got := trailingWhitespaceLen(tc.input)
if got != tc.want {
t.Errorf("%s: trailingWhitespaceLen(%q) = %d, want %d", tc.name, tc.input, got, tc.want)
}
}
}
func TestQwenToolCallValueParsing(t *testing.T) {
cases := []struct {
desc string
@ -798,6 +1021,19 @@ celsius
</parameter>
</function>`,
},
{
desc: "ampersands in parameter values",
raw: `<function=get_current_temperature>
<parameter=location>
San Francisco & San Jose
</parameter>
</function>`,
want: `<function name="get_current_temperature">
<parameter name="location">
San Francisco &amp; San Jose
</parameter>
</function>`,
},
}
for _, tc := range cases {
@ -819,6 +1055,8 @@ func TestTrailingWhitespaceLen(t *testing.T) {
{desc: "trailing whitespace with newlines", s: "abc \n", want: 2},
{desc: "only whitespace", s: " \n ", want: 4},
{desc: "leading whitespace doesn't count", s: " \n abc", want: 0},
{desc: "unicode with trailing space", s: "测试🎯 ", want: 1},
{desc: "unicode with trailing tab and newline", s: "مرحبا\t\n", want: 2},
}
for _, tc := range cases {
@ -828,3 +1066,30 @@ func TestTrailingWhitespaceLen(t *testing.T) {
}
}
}
func TestOverlapFunction(t *testing.T) {
cases := []struct {
desc string
s string
delim string
want int
}{
{desc: "no overlap", s: "hello", delim: "<tool", want: 0},
{desc: "full overlap", s: "hello<tool", delim: "<tool>", want: 5},
{desc: "partial overlap", s: "hello<to", delim: "<tool>", want: 3},
{desc: "unicode with partial overlap", s: "测试🎯<to", delim: "<tool>", want: 3},
{desc: "unicode string with no overlap", s: "مرحبا", delim: "<tool>", want: 0},
{desc: "unicode at boundary", s: "世界<", delim: "<tool>", want: 1},
{desc: "unicode delimiter single rune", s: "hello🔧", delim: "🔧工具", want: len("🔧")},
{desc: "unicode delimiter multiple runes", s: "hello🔧工", delim: "🔧工具", want: len("🔧工")},
}
for _, tc := range cases {
t.Run(tc.desc, func(t *testing.T) {
got := overlap(tc.s, tc.delim)
if got != tc.want {
t.Errorf("overlap(%q, %q) = %d, want %d", tc.s, tc.delim, got, tc.want)
}
})
}
}

View File

@ -99,9 +99,7 @@ func Qwen3CoderRenderer(messages []api.Message, tools []api.Tool, _ *api.ThinkVa
sb.WriteString("\n<name>" + name + "</name>")
if len(prop.Type) > 0 {
// TODO(!!!)(drifkin): we should match the reference implementation for
// more complex types here instead of using this format
sb.WriteString("\n<type>" + prop.ToTypeScriptType() + "</type>")
sb.WriteString("\n<type>" + formatToolDefinitionType(prop.Type) + "</type>")
}
if prop.Description != "" {
@ -215,3 +213,24 @@ func formatToolCallArgument(value any) string {
return fmt.Sprintf("%v", value)
}
func formatToolDefinitionType(tp api.PropertyType) string {
if len(tp) == 0 {
return "[]"
}
if len(tp) == 1 {
return tp[0]
}
// TODO(drifkin): it would be nice to format the JSON here similarly to
// python's default json.dumps behavior (spaces after commas and colons).
// This would let us be byte-for-byte compatible with the reference
// implementation for most common inputs
jsonBytes, err := json.Marshal(tp)
if err != nil {
return "[]"
}
return string(jsonBytes)
}

Some files were not shown because too many files have changed in this diff Show More