mirror of https://github.com/ollama/ollama.git
server: num_predict==-2 fills context buffer
This commit is contained in:
parent
76e903cf9d
commit
bf42297350
|
@ -159,7 +159,7 @@ PARAMETER <parameter> <parametervalue>
|
|||
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
|
||||
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
|
||||
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
|
||||
| num_predict | Maximum number of tokens to predict when generating text. (Default: -1, infinite generation) | int | num_predict 42 |
|
||||
| num_predict | Maximum number of tokens to predict when generating text. (Default: -1, infinite generation, -2 = fill context) | int | num_predict 42 |
|
||||
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
|
||||
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
|
||||
| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 |
|
||||
|
|
|
@ -382,6 +382,10 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
|
|||
s.removeSequence(seqIdx, "limit")
|
||||
continue
|
||||
}
|
||||
if seq.numPredict == -2 && len(seq.cache.Inputs) >= s.cache.numCtx {
|
||||
s.removeSequence(seqIdx, "limit")
|
||||
continue
|
||||
}
|
||||
|
||||
for i, input := range seq.inputs {
|
||||
if len(seq.cache.Inputs)+len(seq.pendingInputs)+1 > s.cache.numCtx {
|
||||
|
|
|
@ -327,6 +327,10 @@ func (s *Server) processBatch() error {
|
|||
s.removeSequence(seqIdx, "limit")
|
||||
continue
|
||||
}
|
||||
if seq.numPredict == -2 && int32(len(seq.cache.Inputs)) >= s.cache.numCtx {
|
||||
s.removeSequence(seqIdx, "limit")
|
||||
continue
|
||||
}
|
||||
|
||||
if !s.cache.enabled {
|
||||
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
|
||||
|
|
Loading…
Reference in New Issue