This revamps how we discover GPUs in the system by leveraging the Ollama
runner. This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs. Now the runner does that implicitly based on the actual
device list. In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.
Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.
Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
The GGML CUDA backend allocates additional memory for intermediate
results during calculation. This memory isn't currently allocated
during worst case graph reservation and therefore not included in
scheduling. This means that as these buffers potentially grow
with context length, we could crash.
This extends the memory allocation system down layer from the GGML
graph to the CUDA layer, preallocating the worst case memory there
as well.
Fixes#11753
The GGML scale kernel uses signed 32-bit ints to represent
the number of elements in the tensor. For large images,
mistral-small3.2 overflows this, triggering CUDA errors due
to negative arguments.
Currently, this can happen when the user passes a large image
to mistral-small3.2. However, with upcoming changes to reserve
CUDA memory, it happens every time mistral-small is loaded as
we reserve using a worst case batch.
This patch is part of an upstream GGML commit and should be removed
after GGML is updated past 0a1b398 "ggml: add ops for WAN video model
(cuda && cpu) (#15669)".
Fixes#10388
For each memory allocation we report the size of the (attempted)
allocation and whether it succeeded or failed. The latter status
reporting proved to be not that useful in practice as systems
such as Windows can automatically overflow from VRAM into RAM,
resultings in successful allocations even when there isn't
enough memory where we wanted.
As a result, this information is only used for debug logging,
which isn't worthwhile enough for the amount of code. It
also isn't fully accurate, as multiple allocations may result
in partial failures.
Ollama's recent engine update, llama.cpp, caused all models requiring a slice schema to not display images. As a result, the value of numTokens isn't always the length of the sliced image embed, but rather the end length of the schema. This causes the image embed to not be correctly included during all slice processing.
The recent memory management changes caused all GPUs to be visible
to the runner, regardless of whether they are ultimately used. This
caused CUDA devices to allocate a primary context (~300 MB VRAM) on
each GPU, for each model. This is unnecessary, so we can both avoid
touching GPUs that we exclude in the early stage of allocation and
freeing the memory for any that we touch but don't use.
The issue will continue to exist for the old engine, since it touches
all devices during initialization.
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).
It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Some AMD GPUs do not provide UUIDs and report only "XX". In these
cases, we should use the ordinal ID as an alternate identifier.
This is the same as we always need to do on Windows for AMD.
In addition, this prints out the ID for each GPU when enumerating
them for easier debugging in the future.
Callers can set a backend buffer type to be no-alloc, meaning that
it does not allocate memory for tensors or operations. This can
be used for calculating memory requirements. Tensors and graphs
must be recreated with no-alloc set to false before loading data.
Defaults to false for newly created backend buffer types.
* bf16
* tests
* gpt-oss
* enable gptoss for engine
* rough estimate
* convert to mxfp4
* handle safetensors U8
* clamp glu/linear
* update tokenizer
* MXFP4 support
This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.
* Unit tests for MXFP4 support
This exercises various operations and shapes on both CPU and GPU (if detected
on the system)
* cuda graph
* unit test adjustments
* cuda: optimize memory access
Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4
* mac: fix crash on old macos versions
cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors. Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.
* server: Minimum context length for gptoss
This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.
* ggml: Multiply by numParallel for gptoss sliding window
When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.
* gpt-oss integration
includes harmony parser and thinking levels, etc.
* fix sync
* fix tests
* fix lint
---------
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
* Enable CUDA Graphs for gemma3n.
Similar to
https://github.com/ggml-org/llama.cpp/pull/14741,
though ollama has a slightly different model graph
than llama.cpp which requires different workaround
checks.
* Remove residual check by reshaping differently in gemma3n model
This should make the heuristics more robust
We don't get valid UUIDs for AMD GPUs on Windows, so the best option
is to use the ordinal IDs. This brings us in line with what we currently
do on the Ollama server - the only exception is AMD GPUs on Linux, which
falls back to using ordinal IDs. The GGML implementation has no fallback
but it doesn't appear to occur for any of the GPUs that we support.
It's also possible that there are collisions between ordinal IDs for
different libraries - however the only places where we use them are
AMD on Windows and Metal on Mac, which can never occur on the same
system.
* Re-remove cuda v11
Revert the revert - drop v11 support requiring drivers newer than Feb 23
This reverts commit c6bcdc4223.
* Simplify layout
With only one version of the GPU libraries, we can simplify things down somewhat. (Jetsons still require special handling)
* distinct sbsa variant for linux arm64
This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.
* temporary prevent rocm+cuda mixed loading
This enables matching up devices and information reported by the backend
with system management libraries such as nvml to get accurate free
memory reporting.
GGML has a function to report the allocated size of a backend buffer.
However, this returns 0 if we tried to allocate a buffer and it failed.
For memory management purposes, it's important to know how much we were
trying to allocate. This extends the API to report attempted sizes for
all buffers and whether it succeeeded.
* get eos_token_id from generation_config.json
* refactor
* include both ids and strings in trace
* comments
* remove special case for gemma3 special vocab (#10743)
* Move quantization logic to GGML via new backend
This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.
* Remove "add model quantizations"
This is no longer needed now that quantization is implemented in Go+GGML code directly.
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
Worst case graph preallocation was disabled by a27462b
"ollamarunner: Temporarily disable worst case graph preallocation"
since it caused crashes with large batches when not using the GPU.
This backports upstream llama.cpp commit f057808
"ggml: Don't assert fail when tensor data changes (#13222)", which
fixes the underlying bug and allows reverting the previous workaround.
When ggml_backend_buffer_free() is called, the device memory
is released but not all backends consistently release the actual
ggml_backend_buffer_t in system RAM, causing a memory leak.
Bug #10040
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
Clear KV cache when shift operation is not supported by model.
Added KvCacheCanShift() check to handle models that can't perform cache shifts,
falling back to full cache clear while preserving logical token history to
maintain expected behavior when context window fills up.