Commit Graph

44 Commits

Author SHA1 Message Date
Michael Yang 59412fbb43
convert(gptoss): mxfp4 to ggml layout to avoid jit conversion (#12018)
* convert: return bytes written

* ggml flavor mxfp4

* simplify jit conversion

* comment
2025-08-26 16:41:02 -07:00
Michael Yang 86834a2797
convert: fix tensor sorting (#12015)
there's two bugs here.

1. the check for a layer id is incorrect and should be >= 0 since layer
   0 is valid
2. if both tensors have an layer identifier, it will only compare the
   layer id which will return 0 if the tensors are in the same layer.
   instead it should fallback to comparing the full tensor name
2025-08-26 13:57:46 -07:00
Michael Yang 85ccf7354d
gptoss: enable flash attention by default (#11996) 2025-08-26 13:34:45 -07:00
Michael Yang df335aac09
gpt-oss: disable quantized kv cache (#11929) 2025-08-15 15:01:05 -07:00
Jesse Gross d5a0d8d904 llm: New memory management
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).

It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
2025-08-14 15:24:01 -07:00
Michael Yang 1a19df1f3a
update vendored llama.cpp and ggml (#11823)
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch

This will be redone once my branch is merged upstream in llama.cpp

* feat: Update all patches

There are a number that are no longer needed at all:

- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
    overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream

* feat: Sync llama.cpp and ggml

* fix: Update rsync-filter for all moved/new/removed files

* fix: Add files missing from sync

* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs

* fix: Add ggml files missing from sync

* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files

* fix: Remove mtmd main cpp files

* fix: Add missing include in sampling_ext.cpp

* fix: Update llama.go to use mtmd instead of clip/llava

* fix: Add patch for mtmd_input_text

* chore: Ignore *.patched in the patch directory

* fix: Fix support for arch-specific ggml-cpu source files with new arrangement

In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:

1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units

This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:

1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory

* fix: Use mtmd_helper to correctly load the bitmap for the image

* fix: Apply patch for mtmd_text_input

* fix: Add missing stb to llama.cpp rsync-filter

* fix: Add sync'ed stb vendored header

* fix: Use c++17 and include vendor for go wrapper modules

* fix: Update patch 0015 for upstream implementation of uuid

* feat: Bump to the latest tip of the branch

* fix: Update patches for bump

* feat: Bump back to the cenral repo and point at the latest master

This includes granite 4 and a number of other model architectures!

* fix: Revert changes to ggml export GPU UUID patch

* fix: Add patch for GGML_VERSION and GGML_COMMIT constants

* feat: Sync all patched code

* build: Include cmake/common.cmake in ggml sync

* build: Add top-level include for GNUINstallDirs in CMakeLists.txt

This is used to populate CMAKE_INSTALL_BINDIR

* fix: Add a patch to avoid power throttling API on non-msvc windows builds

* fix: Sync patch changes for ggml-cpu.c

* feat: Bump llama.cpp to 4a4f42

This picks up support for Kimi K2 and PLaMO-2

* feat: Sync llama.cpp

* fix: Handle multi-chunk image encodings from mtmd

* fix: Re-number patches after merge with `main`

* feat: Bump to 41e78c in the makefile

* fix: Fix Solar and argsort/copy patches after bump

* fix: Remove Gemma3n CUDA Graphs patch

It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741

* feat: Sync llama.cpp / ggml after latest bump

* build: Remove unnecessary CFLAGS definitions in cpu.go

* fix: Remove unnecessary additions in the rsync-filter

* fix: Remove unused vendored code for chat template parsing

* Revert "fix: Remove Gemma3n CUDA Graphs patch"

This reverts commit d724caced3.

* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes

https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394

* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n

* unwind mxfp4 patch

Prepare to bump ggml with their impl for mxfp4

* bump

* fix windows build error

* Convert tensors at load time

Repack the mxfp4 tensors as ggmls kernels expect them to be.

* convert mlp bf16 to f32

* buffer the conversion better

* reshape earlier

* openai swiglu

* add ids

* split qkv, gate_up

* fix nested alt tags

* fast attention

* remove debug messages

* fix lint

* remove redundant test

* remap values only if source/target are different

* add back i32->i32 copy

* refactor cpu quants

* clean up vendor

* update patch instructions

* clean up patches

* remove webgpu

* update mem

* also handle gpt-oss

* revert convert changes

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-14 14:42:58 -07:00
Michael Yang fcec04bf42
gptoss: fix memory calc (#11700) 2025-08-05 15:56:12 -07:00
Jesse Gross 8253ad4d2b ggml: Prevent kv cache quanitization on gpt-oss
KV cache quantization has a dependency on the flash attention kernel.
We currently cannot use flash attention with gpt-oss as it requires
additional operations.

The model definition does not call flash attention, so it works
regardless of the setting but the cache will pick up the
quantization type. This updates the flash attention setting earlier
in the loading flow so that all downstream settings are also set correctly.

Fixes: #11671
2025-08-05 13:04:03 -07:00
Michael Yang fa7776fd24
gpt-oss (#11672)
* bf16

* tests

* gpt-oss

* enable gptoss for engine

* rough estimate

* convert to mxfp4

* handle safetensors U8

* clamp glu/linear

* update tokenizer

* MXFP4 support

This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.

* Unit tests for MXFP4 support

This exercises various operations and shapes on both CPU and GPU (if detected
on the system)

* cuda graph

* unit test adjustments

* cuda: optimize memory access

Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4

* mac: fix crash on old macos versions

cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors.  Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.

* server: Minimum context length for gptoss

This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.

* ggml: Multiply by numParallel for gptoss sliding window

When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.

* gpt-oss integration

includes harmony parser and thinking levels, etc.

* fix sync

* fix tests

* fix lint

---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-05 12:21:16 -07:00
Jeffrey Morgan ba04902670
fs/ggml: add multiplier in graph estimates (#11208) 2025-06-26 00:19:44 -07:00
Jeffrey Morgan 3944602f51
fs/ggml: add missing architecture to OllamaEngineRequired() (#11206) 2025-06-26 00:11:23 -07:00
Michael Yang 73b642e6f3
add new gemma model (#11204)
* update patches

* cherry pick metal mean kernel

* cherry pick cuda mean kernel

* gemma3n
2025-06-25 21:47:09 -07:00
Devon Rifkin b2b270ad5d Merge branch 'main' into drifkin/array-head-count-simple 2025-06-23 10:37:31 -07:00
Jesse Gross 94ab428e3f ggml: Seperate tensor load from backend creation
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
 - Create backend, including enumerating tensors and memory allocation
 - Loading tensor data

This allows more flexibility in managing model loading.
2025-05-19 09:54:22 -07:00
Bruce MacDonald bd68d3ae50
ggml: update qwen25vl vision size estimate (#10711) 2025-05-14 16:42:30 -07:00
Bruce MacDonald 0aa8b371dd
model: add Qwen2.5-VL support (#10385) 2025-05-13 20:58:02 -07:00
Michael Yang 23125648b8
chore: update mllama to use ollama engine (#10637) 2025-05-13 17:36:02 -07:00
Devon Rifkin 20c5fd39c8
Merge branch 'main' into drifkin/array-head-count-simple 2025-05-08 11:46:52 -07:00
Daniel Hiltgen 424810450f
Move quantization to new backend (#10363)
* Move quantization logic to GGML via new backend

This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.

* Remove "add model quantizations"

This is no longer needed now that quantization is implemented in Go+GGML code directly.
2025-05-06 11:20:48 -07:00
Jesse Gross 7073600797 ggml: Reduce log level of "key not found"
Most of the time this is not an error.
2025-05-05 11:17:32 -07:00
Devon Rifkin 6ed8898590 ggml: fix crash for array head counts
If it's an array, it uses the max value in the array

If array values for head counts becomes more popular, we can consider a
more invasive change like #10225 to calculate more accurate estimates.

Fixes: #9984
2025-04-27 11:38:06 -07:00
Michael Yang f0ad49ea17 memory 2025-04-25 16:59:20 -07:00
Michael Yang f0c66e6dea llama4 2025-04-25 16:59:20 -07:00
Michael Yang ced7d0e53d fix parameter count 2025-04-25 16:59:01 -07:00
Michael Yang a0dba0f8ae default slice values 2025-04-25 16:59:01 -07:00
Michael Yang 5e20b170a7 update comment 2025-04-25 16:59:01 -07:00
Michael Yang d26c18e25c fix token type 2025-04-25 16:59:01 -07:00
Michael Yang 8d376acc9b zero means zero
use a default of 1024 when asking for zero is confusing since most calls
seem to assume 0 means do not ready any data
2025-04-25 16:59:01 -07:00
Michael Yang 5d0279164c generic ggml.array 2025-04-25 16:59:01 -07:00
Bruce MacDonald 6bd0a983cd model: support for mistral-small in the ollama runner
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
2025-04-03 16:57:36 -07:00
Jesse Gross f66216e399 ggml: Support heterogeneous KV cache layer sizes in memory estimation
Gemma3 uses sliding windows for its context on 5/6 layers, significantly
reducing memory usage but leading to uneven usage across layers,
which makes allocation to the correct GPU difficult. We currently
estimate very conservatively by assuming all layers are consistent
at the max size.

Llama3.2-vision is also inconsistent between self attention and cross
attention layers - at moment, we calculate the correct total size
and then average this across layers. In some cases, this may lead
to crashes if a large layer is placed on a GPU sized by the average.

This allows memory estimation to calculate per-layer KV cache size
and take this account when placing layers onto GPUs. We already do
this for weights that vary per-tensor, so this is a logical extension.

Fixes #9730
Fixes #9890
2025-03-26 13:16:03 -07:00
Michael Yang 4ea4d2b189
Merge pull request #9703 from ollama/mxyng/gemma3-memory
count gemma3 vision tensors
2025-03-13 16:56:34 -07:00
Michael Yang 8d76fa23ef count non-repeating vision layers 2025-03-13 16:53:29 -07:00
Michael Yang 65b88c544f fix divide by zero 2025-03-13 16:35:00 -07:00
Michael Yang a422ba39c9 roughly count gemma3 graph
the largest operation is by far (q @ k) so just count that for
simplicity
2025-03-13 16:35:00 -07:00
Michael Yang d2ec22371e count all vision tensors 2025-03-13 16:35:00 -07:00
Michael Yang 033cec232a count gemma3 vision tensors 2025-03-13 16:34:42 -07:00
Patrick Devine 4bed739259
add verbose mode to the show command (#9640)
Add metadata and tensor information to the show command to be able to
see more information about a model. This outputs the same data as
shown on the model details page on ollama.com
2025-03-13 14:24:27 -07:00
Daniel Hiltgen ab39e08eb9 llm: auto detect models that require Ollama Engine (#1) 2025-03-11 14:49:20 -07:00
Patrick Devine 5f74d1fd47 gemma2 impl 2025-03-11 14:35:08 -07:00
Daniel Hiltgen 1fdb351c37
New engine: vision models and auto-fallback (#9113)
* Include unified vision layers in memory prediction

For newer vision models with a single gguf, include
the projection estimates.

* Adjust CLI to handle both styles of vision model metadata

* Wire up new tokenizers for new engine

If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp.  This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.

This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.

* Lay foundation for auto selection of new engine
2025-03-04 09:03:46 -08:00
Michael Yang 53d2990d9b model: add bos token if configured 2025-02-27 21:04:59 +00:00
Michael Yang b16367b4b2 fix: add back bf16 support
this was accidentally removed when moving fs/ggml from its previous
location
2025-02-25 19:26:14 +00:00
Michael Yang 58245413f4
next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-02-13 16:31:21 -08:00