Commit Graph

10 Commits

Author SHA1 Message Date
Michael Yang 5994e8e8fd
embedding gemma model (#12181)
* ollama: add embeddings
2025-09-04 09:09:07 -07:00
Daniel Hiltgen 517807cdf2
perf: build graph for next batch async to keep GPU busy (#11863)
* perf: build graph for next batch in parallel to keep GPU busy

This refactors the main run loop of the ollama runner to perform the main GPU
intensive tasks (Compute+Floats) in a go routine so we can prepare the next
batch in parallel to reduce the amount of time the GPU stalls waiting for the
next batch of work.

* tests: tune integration tests for ollama engine

This tunes the integration tests to focus more on models supported
by the new engine.
2025-08-29 14:20:28 -07:00
Jesse Gross 3c14461d5d ollamarunner: Separate text and multimodal graphs
For some multimodal models (such as gemma3), we create a single
graph that generates the image embedding and then use this in the
text model. The embedding tensor is completely opaque to the runner.

However, this doesn't work if we need to use the embedding in multiple
batches. This can arise if the embedding is larger than the batch size.
In these cases (as with llama4), we would like to create views that
are more appropriately sized. However, if we do this then the original
source tensor is used in multiple graphs, which isn't allowed. To
avoid that problem, models with this pattern compute the embedding
tensor on first use and recreate the individual views. There is no
longer a single vision and text graph.

This codifies the pattern of separating vision and text graphs. The
logic of computing tensors on demand is moved to the runner, so models
no longer have to worry about this. It also gives the runner visibility
into the multimodal tensors, which is important for memory management.
2025-05-15 13:46:20 -07:00
Jesse Gross dbb149e6f7 ollamarunner: Preallocate worst case graph at startup
Currently, the KV cache and graph are lazily allocated as needed.
The cache is fully allocated on first use of the corresponding
layer whereas the graph grows with the size of the context.

This can be an issue if another application allocates more VRAM
after we do our calculations - Ollama will crash in the middle of
inference. If we instead allocate the maximum needed memory at
startup of the runner, we will either succeed or fail at that point
rather than at some surprising time in the future.

Currently, this only generates a worst case batch for text, which
means that vision models may get a partial allocation and continue
to lazily allocate the rest.
2025-04-08 10:01:28 -07:00
jmorganca b42970063d kvcache: Add check for values that fall out of sliding window cache
The sliding window cache trims entries that are outside the window for
the latest token. This works when we are extending the cache, such as
when the conversation continues. However, if we have a partial overlap
in conversation (including the BOS tokens), then we resume from a past
point in the conversation and the needed tokens are no longer stored
in memory. This verifies that the new window overlaps with the old one
before reusing the cache.

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-04-02 11:55:48 -07:00
Bruce MacDonald 66b2539238
runner: clear cache when shift is not possible (#9433)
Clear KV cache when shift operation is not supported by model.
Added KvCacheCanShift() check to handle models that can't perform cache shifts,
falling back to full cache clear while preserving logical token history to
maintain expected behavior when context window fills up.
2025-03-31 12:54:45 -07:00
Bruce MacDonald 95e271d98f
runner: remove cache prompt flag from ollama runner (#9826)
We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.
2025-03-17 15:11:15 -07:00
Jesse Gross a1cda80bcb model: Update encoder cache to use multimodal input processing handler
The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.

Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.

Most of this is simply moving the input data structures to a new
package to avoid import cycles.
2025-03-09 17:05:26 -07:00
Jesse Gross a7e63b82be ollamarunner: Improve multimodal input handling
Various vision models have different requirements for how they
receive their inputs. For example:
 - Mllama wants images together with text and the image embeddings
   don't themselves have positions or get stored in the main KV cache
 - Llava-style models feed in embeddings similar to tokens and
   images correspond to a varying number of tokens in the cache.

In addition, the strategy for providing inputs must support batching
and multiple sequences, which are managed by the runner. At the same
time, we want to keep data handling fully in the model so that new
architectures are not bottlenecked by runner code which does not
understand their particular requirements.

This provides a method for models to edit the input stream so that
it meets their needs while still being in a format that the runner
understands. This allows the runner to avoid special processing
for different models.

In addition, this fixes a regression where non-vision models may
try to incorrectly interpret images.
2025-03-06 16:54:16 -08:00
Jesse Gross ed443a0393 Runner for Ollama engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.

In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
 - Parallel processing
 - Memory management for defragmentation and shifting
 - Multi-modal modals

Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:

Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve

Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
2025-02-13 17:09:26 -08:00