setting samebatch on the vision start token is problematic because it
will be shared with other inputs that also use images. this will cause
the input to be cached and the runner will not see SameBatch. SameBatch
will also be incorrect since it may be for a different image.
assigning samebatch to the input tokens resolves this by ensure it's
assigned correctly to inputs corresponding to the image.
not setting same batch correctly may cause panics during inference since
images are no longer guaranteed to be in the same batch.
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
* get eos_token_id from generation_config.json
* refactor
* include both ids and strings in trace
* comments
* remove special case for gemma3 special vocab (#10743)
For some multimodal models (such as gemma3), we create a single
graph that generates the image embedding and then use this in the
text model. The embedding tensor is completely opaque to the runner.
However, this doesn't work if we need to use the embedding in multiple
batches. This can arise if the embedding is larger than the batch size.
In these cases (as with llama4), we would like to create views that
are more appropriately sized. However, if we do this then the original
source tensor is used in multiple graphs, which isn't allowed. To
avoid that problem, models with this pattern compute the embedding
tensor on first use and recreate the individual views. There is no
longer a single vision and text graph.
This codifies the pattern of separating vision and text graphs. The
logic of computing tensors on demand is moved to the runner, so models
no longer have to worry about this. It also gives the runner visibility
into the multimodal tensors, which is important for memory management.
Currently, the KV cache and graph are lazily allocated as needed.
The cache is fully allocated on first use of the corresponding
layer whereas the graph grows with the size of the context.
This can be an issue if another application allocates more VRAM
after we do our calculations - Ollama will crash in the middle of
inference. If we instead allocate the maximum needed memory at
startup of the runner, we will either succeed or fail at that point
rather than at some surprising time in the future.
Currently, this only generates a worst case batch for text, which
means that vision models may get a partial allocation and continue
to lazily allocate the rest.
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
Rather than directly giving the input data to models, we can
pass a tensor instead. In the short term, this saves some duplicated
code.
Longer term, we will want to overlap setting up the next batch with
processing of the current one. In this case, we will only have the
shape of tensor but it will not be loaded with data at the time of
graph generation. By passing only a tensor to models now, we set up
this possibility and prevent them from relying on data that they won't
have in the future.
Although the same could be done for Positions and Outputs, in some
cases we either need the raw input data or don't use them at all.
Therefore, for now we leave them as they are and allow models to
convert them to tensors as needed.
Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.
This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
Models may require that a set of inputs all be processed as part
of the same batch. For example, if an image has multiple patches
with fully connected attention between them, we should not split
the batch in the middle of an image.
Fixes#9697
Softcap isn't in the whitepaper/implementation for the language model so we should remove it. There is no discernible difference in output with it removed.
This is useful for a few things:
- Work around bugs, such as having 2 images in one batch
- Keep the image in a single batch for fully connected attention
- Improve performance by not evaluating embeddings multiple times