mirror of https://github.com/ollama/ollama.git
				
				
				
			
		
			
				
	
	
		
			52 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			52 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Go
		
	
	
	
| package convert
 | |
| 
 | |
| import "github.com/ollama/ollama/fs/ggml"
 | |
| 
 | |
| type gemma2Model struct {
 | |
| 	gemmaModel
 | |
| 	SlidingWindow         uint32  `json:"sliding_window"`
 | |
| 	AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
 | |
| 	FinalLogitSoftcap     float32 `json:"final_logit_softcapping"`
 | |
| }
 | |
| 
 | |
| func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
 | |
| 	kv := p.ModelParameters.KV(t)
 | |
| 	kv["general.architecture"] = "gemma2"
 | |
| 	kv["gemma2.context_length"] = p.MaxPositionEmbeddings
 | |
| 	kv["gemma2.embedding_length"] = p.HiddenSize
 | |
| 	kv["gemma2.block_count"] = p.HiddenLayers
 | |
| 	kv["gemma2.feed_forward_length"] = p.IntermediateSize
 | |
| 	kv["gemma2.attention.head_count"] = p.NumAttentionHeads
 | |
| 	kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
 | |
| 	kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
 | |
| 	kv["gemma2.attention.key_length"] = p.HeadDim
 | |
| 	kv["gemma2.attention.value_length"] = p.HeadDim
 | |
| 	kv["gemma2.attention.sliding_window"] = p.SlidingWindow
 | |
| 	kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
 | |
| 	kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
 | |
| 	kv["tokenizer.ggml.eot_token_id"] = uint32(107)
 | |
| 	kv["tokenizer.ggml.middle_token_id"] = uint32(68)
 | |
| 	kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
 | |
| 	kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
 | |
| 	return kv
 | |
| }
 | |
| 
 | |
| func (p *gemma2Model) Replacements() []string {
 | |
| 	return []string{
 | |
| 		"model.embed_tokens", "token_embd",
 | |
| 		"model.norm", "output_norm",
 | |
| 		"model.layers", "blk",
 | |
| 		"input_layernorm", "attn_norm",
 | |
| 		"self_attn.q_proj", "attn_q",
 | |
| 		"self_attn.k_proj", "attn_k",
 | |
| 		"self_attn.v_proj", "attn_v",
 | |
| 		"self_attn.o_proj", "attn_output",
 | |
| 		"mlp.gate_proj", "ffn_gate",
 | |
| 		"mlp.down_proj", "ffn_down",
 | |
| 		"mlp.up_proj", "ffn_up",
 | |
| 		"post_attention_layernorm", "post_attention_norm",
 | |
| 		"pre_feedforward_layernorm", "ffn_norm",
 | |
| 		"post_feedforward_layernorm", "post_ffw_norm",
 | |
| 	}
 | |
| }
 |