mirror of https://github.com/ollama/ollama.git
158 lines
4.6 KiB
Go
158 lines
4.6 KiB
Go
package convert
|
|
|
|
import (
|
|
"slices"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
"github.com/pdevine/tensor"
|
|
"github.com/pdevine/tensor/native"
|
|
)
|
|
|
|
type qwen3Model struct {
|
|
ModelParameters
|
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
HeadDim uint32 `json:"head_dim"`
|
|
NumExperts uint32 `json:"num_experts"`
|
|
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
|
NormTopkProb bool `json:"norm_topk_prob"`
|
|
RopeTheta float32 `json:"rope_theta"`
|
|
RopeScaling struct {
|
|
Type string `json:"type"`
|
|
Factor ropeFactor `json:"factor"`
|
|
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
|
MropeSection []int32 `json:"mrope_section"`
|
|
} `json:"rope_scaling"`
|
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
}
|
|
|
|
// KV implements ModelConverter.
|
|
func (q *qwen3Model) KV(t *Tokenizer) ggml.KV {
|
|
arch := "qwen3"
|
|
if q.NumExperts > 0 {
|
|
arch += "moe"
|
|
}
|
|
|
|
kv := q.ModelParameters.KV(t)
|
|
kv["general.architecture"] = arch
|
|
kv["block_count"] = q.HiddenLayers
|
|
kv["context_length"] = q.MaxPositionEmbeddings
|
|
kv["embedding_length"] = q.HiddenSize
|
|
kv["feed_forward_length"] = q.IntermediateSize
|
|
kv["attention.head_count"] = q.NumAttentionHeads
|
|
kv["attention.head_count_kv"] = q.NumKeyValueHeads
|
|
kv["attention.key_length"] = q.HeadDim
|
|
kv["attention.value_length"] = q.HeadDim
|
|
|
|
if q.NumExperts > 0 {
|
|
kv["expert_count"] = q.NumExperts
|
|
kv["expert_used_count"] = q.NumExpertsPerToken
|
|
kv["norm_top_k_prob"] = q.NormTopkProb
|
|
}
|
|
|
|
kv["rope.freq_base"] = q.RopeTheta
|
|
kv["attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
|
|
|
|
switch q.RopeScaling.Type {
|
|
case "":
|
|
// no scaling
|
|
case "yarn":
|
|
kv["rope.scaling.type"] = q.RopeScaling.Type
|
|
kv["rope.scaling.factor"] = q.RopeScaling.Factor
|
|
case "mrope", "default":
|
|
kv["rope.mrope_section"] = q.RopeScaling.MropeSection
|
|
default:
|
|
panic("unknown rope scaling type")
|
|
}
|
|
return kv
|
|
}
|
|
|
|
// Tensors implements ModelConverter.
|
|
func (q *qwen3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
var out []*ggml.Tensor
|
|
|
|
// TODO: handle split experts
|
|
|
|
for _, t := range ts {
|
|
switch {
|
|
case strings.Contains(t.Name(), "ffn_gate_up_exps"):
|
|
afterFunc := func(t tensor.Tensor) (tensor.Tensor, error) { return tensor.Transpose(t, 0, 2, 1) }
|
|
for t := range splitDim(t, 2,
|
|
split{Replacer: strings.NewReplacer("gate_up", "gate"), afterFunc: afterFunc},
|
|
split{Replacer: strings.NewReplacer("gate_up", "up"), afterFunc: afterFunc},
|
|
) {
|
|
t.Shape[1], t.Shape[2] = t.Shape[2], t.Shape[1]
|
|
out = append(out, t)
|
|
}
|
|
case strings.Contains(t.Name(), "ffn_down_exps"):
|
|
shape := slices.Clone(t.Shape())
|
|
shape[1], shape[2] = shape[2], shape[1]
|
|
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
|
dims := make([]int, len(shape))
|
|
for i := range shape {
|
|
dims[i] = int(shape[i])
|
|
}
|
|
|
|
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
tt, err := tensor.Transpose(tt, 0, 2, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// flatten tensor so it can be written as a vector
|
|
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return native.VectorF32(tt.(*tensor.Dense))
|
|
})
|
|
out = append(out, &ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: shape,
|
|
WriterTo: t,
|
|
})
|
|
default:
|
|
out = append(out, &ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: t,
|
|
})
|
|
}
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
// Replacements implements ModelConverter.
|
|
func (q *qwen3Model) Replacements() []string {
|
|
return []string{
|
|
"lm_head", "output",
|
|
"model.embed_tokens", "token_embd",
|
|
"model.layers", "blk",
|
|
"input_layernorm", "attn_norm",
|
|
"self_attn.k_proj", "attn_k",
|
|
"self_attn.k_norm", "attn_k_norm",
|
|
"self_attn.v_proj", "attn_v",
|
|
"self_attn.q_proj", "attn_q",
|
|
"self_attn.q_norm", "attn_q_norm",
|
|
"self_attn.o_proj", "attn_output",
|
|
"mlp.down_proj", "ffn_down",
|
|
"mlp.gate_proj", "ffn_gate",
|
|
"mlp.up_proj", "ffn_up",
|
|
"mlp.gate.weight", "ffn_gate_inp.weight",
|
|
"mlp.experts.down_proj", "ffn_down_exps.weight",
|
|
"mlp.experts.gate_up_proj", "ffn_gate_up_exps.weight",
|
|
"post_attention_layernorm", "ffn_norm",
|
|
"model.norm", "output_norm",
|
|
}
|
|
}
|
|
|
|
var _ ModelConverter = (*qwen3Model)(nil)
|