mirror of https://github.com/ollama/ollama.git
				
				
				
			
		
			
				
	
	
		
			246 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Go
		
	
	
	
| package server
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"log/slog"
 | |
| 	"maps"
 | |
| 	"os"
 | |
| 	"strings"
 | |
| 	"unsafe"
 | |
| 
 | |
| 	fsggml "github.com/ollama/ollama/fs/ggml"
 | |
| 	"github.com/ollama/ollama/ml/backend/ggml"
 | |
| )
 | |
| 
 | |
| type quantizer struct {
 | |
| 	*os.File
 | |
| 	offset     uint64
 | |
| 	from, to   *fsggml.Tensor
 | |
| 	progressFn func(n uint64)
 | |
| }
 | |
| 
 | |
| func (q quantizer) WriteTo(w io.Writer) (int64, error) {
 | |
| 	quantize := q.from.Kind != q.to.Kind
 | |
| 	sr := io.NewSectionReader(q, int64(q.offset), int64(q.from.Size()))
 | |
| 	if !quantize {
 | |
| 		n, err := io.Copy(w, sr)
 | |
| 		q.progressFn(q.from.Size())
 | |
| 		return n, err
 | |
| 	}
 | |
| 	data, err := io.ReadAll(sr)
 | |
| 	if err != nil {
 | |
| 		slog.Warn("file read error", "tensor", q.from.Name, "file", q.Name(), "error", err)
 | |
| 		return 0, fmt.Errorf("unable to read tensor %s from %s: %s", q.from.Name, q.Name(), err)
 | |
| 	}
 | |
| 	var f32s []float32
 | |
| 	newType := fsggml.TensorType(q.to.Kind)
 | |
| 	if fsggml.TensorType(q.from.Kind) == fsggml.TensorTypeF32 {
 | |
| 		f32s = unsafe.Slice((*float32)(unsafe.Pointer(&data[0])), q.from.Elements())
 | |
| 	} else {
 | |
| 		f32s = ggml.ConvertToF32(data, q.from.Kind, q.from.Elements())
 | |
| 	}
 | |
| 	data = ggml.Quantize(newType, f32s, q.from.Shape)
 | |
| 	n, err := w.Write(data)
 | |
| 	q.progressFn(q.from.Size())
 | |
| 	return int64(n), err
 | |
| }
 | |
| 
 | |
| type quantizeState struct {
 | |
| 	nAttnV    int  // Number of attn_*v* weight tensors
 | |
| 	nFfnDown  int  // Number of ffn_down tensors
 | |
| 	iAttnV    int  // Running counter of number of attn_v tensors that have been processed
 | |
| 	iFfnDown  int  // Running counter of number of ffn_down tensors that have been processed
 | |
| 	hasOutput bool // used to figure out if a model shares tok_embd with the output weight
 | |
| }
 | |
| 
 | |
| func useMoreBits(iLayer, nLayers int) bool {
 | |
| 	return iLayer < (nLayers/8) || iLayer >= 7*nLayers/8 || (iLayer-nLayers/8)%3 == 2
 | |
| }
 | |
| 
 | |
| func getTensorNewType(kv fsggml.KV, qs *quantizeState, newType fsggml.TensorType, name string, shape []uint64, ftype fsggml.FileType) fsggml.TensorType {
 | |
| 	// Ported from llama_tensor_get_type, removed unsupported quantization types
 | |
| 	nExperts := max(1, kv.Uint("expert_count", 0))
 | |
| 	if name == "output.weight" || name == "output_norm.weight" || (!qs.hasOutput && name == "token_embd.weight") {
 | |
| 		nx := shape[0]
 | |
| 		qk_k := newType.BlockSize()
 | |
| 		if nx%qk_k != 0 {
 | |
| 			newType = fsggml.TensorTypeQ8_0
 | |
| 		} else if newType != fsggml.TensorTypeQ8_0 {
 | |
| 			newType = fsggml.TensorTypeQ6_K
 | |
| 		}
 | |
| 	} else if strings.Contains(name, "attn_v.weight") {
 | |
| 		if (ftype == fsggml.FileTypeQ4_K_M) &&
 | |
| 			useMoreBits(qs.iAttnV, qs.nAttnV) {
 | |
| 			newType = fsggml.TensorTypeQ6_K
 | |
| 		} else if ftype == fsggml.FileTypeQ4_K_S && qs.iAttnV < 4 {
 | |
| 			newType = fsggml.TensorTypeQ5_K
 | |
| 		}
 | |
| 
 | |
| 		// TODO
 | |
| 		// if (qs.model.type == LLM_TYPE_70B) {
 | |
| 		// 	// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
 | |
| 		// 	// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
 | |
| 		// 	// nearly negligible increase in model size by quantizing this tensor with more bits:
 | |
| 		// 	if (newType == GGML_TYPE_Q3_K || newType == GGML_TYPE_Q4_K) newType = GGML_TYPE_Q5_K;
 | |
| 		// }
 | |
| 
 | |
| 		if nExperts == 8 {
 | |
| 			// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
 | |
| 			newType = fsggml.TensorTypeQ8_0
 | |
| 		}
 | |
| 		qs.iAttnV++
 | |
| 	} else if strings.Contains(name, "attn_k.weight") {
 | |
| 		if nExperts == 8 {
 | |
| 			// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
 | |
| 			newType = fsggml.TensorTypeQ8_0
 | |
| 		}
 | |
| 	} else if strings.Contains(name, "ffn_down") {
 | |
| 		iLayer := qs.iFfnDown
 | |
| 		n_layer := qs.nFfnDown
 | |
| 		if ftype == fsggml.FileTypeQ4_K_M {
 | |
| 			if useMoreBits(iLayer, n_layer) {
 | |
| 				newType = fsggml.TensorTypeQ6_K
 | |
| 			}
 | |
| 		} else if ftype == fsggml.FileTypeQ4_K_S && iLayer < n_layer/8 {
 | |
| 			newType = fsggml.TensorTypeQ5_K
 | |
| 		}
 | |
| 		qs.iFfnDown++
 | |
| 	} else if strings.Contains(name, "attn_output.weight") {
 | |
| 		if nExperts == 8 {
 | |
| 			if ftype == fsggml.FileTypeQ4_K_S || ftype == fsggml.FileTypeQ4_K_M {
 | |
| 				newType = fsggml.TensorTypeQ5_K
 | |
| 			}
 | |
| 		}
 | |
| 	} else if strings.Contains(name, "attn_qkv.weight") {
 | |
| 		if ftype == fsggml.FileTypeQ4_K_M {
 | |
| 			newType = fsggml.TensorTypeQ5_K
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if newType.IsQuantized() {
 | |
| 		nx := shape[0]
 | |
| 		qk_k := newType.BlockSize()
 | |
| 
 | |
| 		// Check if first dimension is divisible by block size
 | |
| 		if nx%qk_k != 0 {
 | |
| 			// Store the original type for logging
 | |
| 			originalType := newType
 | |
| 
 | |
| 			// Select appropriate fallback based on original type
 | |
| 			switch newType {
 | |
| 			case fsggml.TensorTypeQ4_K:
 | |
| 				newType = fsggml.TensorTypeQ5_0
 | |
| 			case fsggml.TensorTypeQ5_K:
 | |
| 				newType = fsggml.TensorTypeQ5_1
 | |
| 			case fsggml.TensorTypeQ6_K:
 | |
| 				newType = fsggml.TensorTypeQ8_0
 | |
| 			}
 | |
| 
 | |
| 			// Final check - if still incompatible, fall back to F16
 | |
| 			if nx%newType.BlockSize() != 0 {
 | |
| 				newType = fsggml.TensorTypeF16
 | |
| 			}
 | |
| 
 | |
| 			slog.Warn(fmt.Sprintf("tensor cols %d are not divisible by %d, required for %s - using fallback quantization %s",
 | |
| 				nx, qk_k, originalType.String(), newType.String()))
 | |
| 		}
 | |
| 	}
 | |
| 	return newType
 | |
| }
 | |
| 
 | |
| func quantize(in, out *os.File, orig *fsggml.GGML, newFileType fsggml.FileType, progressFn func(n uint64)) error {
 | |
| 	kv := maps.Clone(orig.KV())
 | |
| 	kv["general.file_type"] = newFileType
 | |
| 	// kv["general.quantization_version"] = ggml.QuantizationVersion()
 | |
| 	qs := &quantizeState{}
 | |
| 	// Build up the quantize state so newType can adjust types
 | |
| 	layerCount := 0
 | |
| 	for k, l := range orig.Tensors().GroupLayers() {
 | |
| 		if strings.HasPrefix(k, "blk.") {
 | |
| 			layerCount++
 | |
| 		}
 | |
| 		for _, tensor := range l {
 | |
| 			if strings.Contains(tensor.Name, "attn_v.weight") ||
 | |
| 				strings.Contains(tensor.Name, "attn_qkv.weight") ||
 | |
| 				strings.Contains(tensor.Name, "attn_kv_b.weight") {
 | |
| 				qs.nAttnV++
 | |
| 			} else if tensor.Name == "output.weight" {
 | |
| 				qs.hasOutput = true
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	qs.nFfnDown = layerCount
 | |
| 
 | |
| 	origTensors := orig.Tensors().Items()
 | |
| 	outputTensors := make([]*fsggml.Tensor, len(origTensors))
 | |
| 	for i, tensor := range origTensors {
 | |
| 		tensor := tensor
 | |
| 		newType := newType(tensor, kv, qs, newFileType)
 | |
| 		newTensor := &fsggml.Tensor{
 | |
| 			Name:  tensor.Name,
 | |
| 			Shape: tensor.Shape,
 | |
| 			Kind:  uint32(newType),
 | |
| 		}
 | |
| 		outputTensors[i] = newTensor
 | |
| 		outputTensors[i].WriterTo = quantizer{
 | |
| 			File:       in,
 | |
| 			offset:     orig.Tensors().Offset + tensor.Offset,
 | |
| 			from:       tensor,
 | |
| 			to:         newTensor,
 | |
| 			progressFn: progressFn,
 | |
| 		}
 | |
| 	}
 | |
| 	return fsggml.WriteGGUF(out, kv, outputTensors)
 | |
| }
 | |
| 
 | |
| func newType(t *fsggml.Tensor, kv fsggml.KV, qs *quantizeState, ftype fsggml.FileType) fsggml.TensorType {
 | |
| 	defaultType := ftype.ToTensorType()
 | |
| 	name := t.Name
 | |
| 	quantize := strings.HasSuffix(name, "weight")
 | |
| 
 | |
| 	// don't quantize vision stuff
 | |
| 	quantize = quantize && (!strings.Contains(name, "v.") || strings.Contains(name, "_v."))
 | |
| 	quantize = quantize && !strings.Contains(name, "mm.")
 | |
| 
 | |
| 	// quantize only 2D and 3D tensors (experts)
 | |
| 	quantize = quantize && (len(t.Shape) >= 2)
 | |
| 
 | |
| 	// do not quantize norm tensors
 | |
| 	quantize = quantize && !strings.Contains(name, "_norm.weight")
 | |
| 
 | |
| 	// do not quantize expert gating tensors
 | |
| 	quantize = quantize && !strings.Contains(name, "ffn_gate_inp.weight")
 | |
| 
 | |
| 	// do not quantize positional embeddings and token types (BERT)
 | |
| 	quantize = quantize && (name != "position_embd.weight")
 | |
| 	quantize = quantize && (name != "token_types.weight")
 | |
| 
 | |
| 	// do not quantize Mamba's small yet 2D weights
 | |
| 	// NOTE: can't use LLM_TN here because the layer number is not known
 | |
| 	quantize = quantize && !strings.Contains(name, "ssm_conv1d.weight")
 | |
| 
 | |
| 	// do not quantize RWKV's time_mix_first tensors
 | |
| 	quantize = quantize && !strings.Contains(name, "time_mix_first.weight")
 | |
| 	quantize = quantize && !strings.Contains(name, "time_mix_w1.weight")
 | |
| 	quantize = quantize && !strings.Contains(name, "time_mix_w2.weight")
 | |
| 	quantize = quantize && !strings.Contains(name, "time_mix_decay_w1.weight")
 | |
| 	quantize = quantize && !strings.Contains(name, "time_mix_decay_w2.weight")
 | |
| 	quantize = quantize && !strings.Contains(name, "time_mix_lerp_fused.weight")
 | |
| 
 | |
| 	// do not quantize relative position bias (T5)
 | |
| 	quantize = quantize && !strings.Contains(name, "attn_rel_b.weight")
 | |
| 
 | |
| 	quantize = quantize && !strings.Contains(name, "per_layer_token_embd.weight")
 | |
| 
 | |
| 	newType := fsggml.TensorType(t.Kind)
 | |
| 	if quantize {
 | |
| 		// get more optimal quantization type based on the tensor shape, layer, etc.
 | |
| 		newType = getTensorNewType(kv, qs, defaultType, t.Name, t.Shape, ftype)
 | |
| 		if newType != defaultType {
 | |
| 			slog.Debug("tensor quantization adjusted for better quality", "name", t.Name, "requested", defaultType, "quantization", newType)
 | |
| 		}
 | |
| 	}
 | |
| 	return newType
 | |
| }
 |